Mapping properties of the Laplacian in Sobolev spaces of forms on complete hyperbolic manifolds

被引:3
|
作者
Bruna, J [1 ]
Girbau, J [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
关键词
Hodge-de Rham laplacian; rough Laplacian; Sobolev spaces; Riesz transforms; hyperbolic manifolds;
D O I
10.1023/B:AGAG.0000018554.31037.23
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a complete manifold M with constant negative curvature, we prove that the rough Laplacian Delta(R) defines topological isomorphisms in the scale of Sobolev spaces H-p(s)(M) of p-forms for all p, 0 < p < n. For the de Rham Laplacian Delta and M = H-n, the Poincare hyperbolic space, this is shown too for 0 less than or equal to p less than or equal to n, p not equal n/2, p not equal (n +/- 1)/2.
引用
收藏
页码:151 / 176
页数:26
相关论文
共 50 条
  • [1] Mapping Properties of the Laplacian in Sobolev Spaces of Forms on Complete Hyperbolic Manifolds
    Joaquim Bruna
    Joan Girbau
    Annals of Global Analysis and Geometry, 2004, 25 : 151 - 176
  • [2] Laplacian on forms and anomalies in closed hyperbolic manifolds
    Bytsenko, AA
    Gonçalves, AE
    Simoes, M
    BRAZILIAN JOURNAL OF PHYSICS, 2000, 30 (03) : 581 - 589
  • [3] A PROPERTY OF SOBOLEV SPACES ON COMPLETE RIEMANNIAN MANIFOLDS
    Milatovic, Ognjen
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2005,
  • [4] Sobolev spaces with variable exponents on complete manifolds
    Gaczkowski, Michal
    Gorka, Przemyslaw
    Pons, Daniel J.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (04) : 1379 - 1415
  • [5] Existence and Uniqueness of Weak Solution of p(x)- Laplacian in Sobolev Spaces With Variable Exponents in Complete Manifolds
    Benslimane, Omar
    Aberqi, Ahmed
    Bennouna, Jaouad
    FILOMAT, 2021, 35 (05) : 1453 - 1463
  • [6] Density of bounded maps in Sobolev spaces into complete manifolds
    Pierre Bousquet
    Augusto C. Ponce
    Jean Van Schaftingen
    Annali di Matematica Pura ed Applicata (1923 -), 2017, 196 : 2261 - 2301
  • [7] Density of bounded maps in Sobolev spaces into complete manifolds
    Bousquet, Pierre
    Ponce, Augusto C.
    Van Schaftingen, Jean
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (06) : 2261 - 2301
  • [8] Eigenvalue Estimates for the Bochner Laplacian and Harmonic Forms on Complete Manifolds
    Charalambous, Nelia
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2010, 59 (01) : 183 - 206
  • [9] Sobolev spaces and hyperbolic fillings
    Bonk, Mario
    Saksman, Eero
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2018, 737 : 161 - 187
  • [10] Sobolev spaces on Riemannian manifolds
    Lect Notes Math, (1-106):