Mapping properties of the Laplacian in Sobolev spaces of forms on complete hyperbolic manifolds

被引:3
|
作者
Bruna, J [1 ]
Girbau, J [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
关键词
Hodge-de Rham laplacian; rough Laplacian; Sobolev spaces; Riesz transforms; hyperbolic manifolds;
D O I
10.1023/B:AGAG.0000018554.31037.23
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a complete manifold M with constant negative curvature, we prove that the rough Laplacian Delta(R) defines topological isomorphisms in the scale of Sobolev spaces H-p(s)(M) of p-forms for all p, 0 < p < n. For the de Rham Laplacian Delta and M = H-n, the Poincare hyperbolic space, this is shown too for 0 less than or equal to p less than or equal to n, p not equal n/2, p not equal (n +/- 1)/2.
引用
收藏
页码:151 / 176
页数:26
相关论文
共 50 条