Quantile Regression for Doubly Censored Data

被引:21
|
作者
Ji, Shuang [1 ]
Peng, Limin
Cheng, Yu [2 ,3 ]
Lai, HuiChuan [4 ,5 ]
机构
[1] Emory Univ, Rollins Sch Publ Hlth, Dept Biostat & Bioinformat, Atlanta, GA 30322 USA
[2] Univ Pittsburgh, Dept Stat, Pittsburgh, PA 15260 USA
[3] Univ Pittsburgh, Dept Psychiat, Pittsburgh, PA 15260 USA
[4] Univ Wisconsin, Dept Nutr Sci, Madison, WI 53706 USA
[5] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI 53706 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Conditional inference; Double censoring; Empirical process; Martingale; Regression quantile; Truncation; FAILURE TIME MODEL; LINEAR RANK-TESTS; CYSTIC-FIBROSIS; NONPARAMETRIC-ESTIMATION; SURVIVAL ANALYSIS; PSEUDOMONAS-AERUGINOSA; LUNG-DISEASE; M-ESTIMATORS; MORTALITY; EQUATIONS;
D O I
10.1111/j.1541-0420.2011.01667.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Double censoring often occurs in registry studies when left censoring is present in addition to right censoring. In this work, we propose a new analysis strategy for such doubly censored data by adopting a quantile regression model. We develop computationally simple estimation and inference procedures by appropriately using the embedded martingale structure. Asymptotic properties, including the uniform consistency and weak convergence, are established for the resulting estimators. Moreover, we propose conditional inference to address the special identifiability issues attached to the double censoring setting. We further show that the proposed method can be readily adapted to handle left truncation. Simulation studies demonstrate good finite-sample performance of the new inferential procedures. The practical utility of our method is illustrated by an analysis of the onset of the most commonly investigated respiratory infection, Pseudomonas aeruginosa, in children with cystic fibrosis through the use of the U.S. Cystic Fibrosis Registry.
引用
收藏
页码:101 / 112
页数:12
相关论文
共 50 条
  • [41] Variable selection in censored quantile regression with high dimensional data
    Yali Fan
    Yanlin Tang
    Zhongyi Zhu
    Science China Mathematics, 2018, 61 : 641 - 658
  • [42] An adapted loss function for composite quantile regression with censored data
    Xiaohui Yuan
    Xinran Zhang
    Wei Guo
    Qian Hu
    Computational Statistics, 2024, 39 : 1371 - 1401
  • [43] Power-Transformed Linear Quantile Regression With Censored Data
    Yin, Guosheng
    Zeng, Donglin
    Li, Hui
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (483) : 1214 - 1224
  • [44] A skew-t quantile regression for censored and missing data
    Galarza Morales, Christian E.
    Lachos, Victor H.
    Bourguignon, Marcelo
    STAT, 2021, 10 (01):
  • [45] Bayesian analysis of quantile regression for censored dynamic panel data
    Genya Kobayashi
    Hideo Kozumi
    Computational Statistics, 2012, 27 : 359 - 380
  • [46] Bayesian analysis of quantile regression for censored dynamic panel data
    Kobayashi, Genya
    Kozumi, Hideo
    COMPUTATIONAL STATISTICS, 2012, 27 (02) : 359 - 380
  • [47] Quantile regression for censored data in haematopoietic cell transplant research
    Bo Wei
    Bone Marrow Transplantation, 2022, 57 : 853 - 856
  • [48] Cure Rate Quantile Regression for Censored Data With a Survival Fraction
    Wu, Yuanshan
    Yin, Guosheng
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (504) : 1517 - 1531
  • [49] Quantile regression for censored data in haematopoietic cell transplant research
    Wei, Bo
    BONE MARROW TRANSPLANTATION, 2022, 57 (06) : 853 - 856
  • [50] Variable selection in censored quantile regression with high dimensional data
    Yali Fan
    Yanlin Tang
    Zhongyi Zhu
    Science China(Mathematics), 2018, 61 (04) : 641 - 658