Quantile Regression for Doubly Censored Data

被引:21
|
作者
Ji, Shuang [1 ]
Peng, Limin
Cheng, Yu [2 ,3 ]
Lai, HuiChuan [4 ,5 ]
机构
[1] Emory Univ, Rollins Sch Publ Hlth, Dept Biostat & Bioinformat, Atlanta, GA 30322 USA
[2] Univ Pittsburgh, Dept Stat, Pittsburgh, PA 15260 USA
[3] Univ Pittsburgh, Dept Psychiat, Pittsburgh, PA 15260 USA
[4] Univ Wisconsin, Dept Nutr Sci, Madison, WI 53706 USA
[5] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI 53706 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Conditional inference; Double censoring; Empirical process; Martingale; Regression quantile; Truncation; FAILURE TIME MODEL; LINEAR RANK-TESTS; CYSTIC-FIBROSIS; NONPARAMETRIC-ESTIMATION; SURVIVAL ANALYSIS; PSEUDOMONAS-AERUGINOSA; LUNG-DISEASE; M-ESTIMATORS; MORTALITY; EQUATIONS;
D O I
10.1111/j.1541-0420.2011.01667.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Double censoring often occurs in registry studies when left censoring is present in addition to right censoring. In this work, we propose a new analysis strategy for such doubly censored data by adopting a quantile regression model. We develop computationally simple estimation and inference procedures by appropriately using the embedded martingale structure. Asymptotic properties, including the uniform consistency and weak convergence, are established for the resulting estimators. Moreover, we propose conditional inference to address the special identifiability issues attached to the double censoring setting. We further show that the proposed method can be readily adapted to handle left truncation. Simulation studies demonstrate good finite-sample performance of the new inferential procedures. The practical utility of our method is illustrated by an analysis of the onset of the most commonly investigated respiratory infection, Pseudomonas aeruginosa, in children with cystic fibrosis through the use of the U.S. Cystic Fibrosis Registry.
引用
收藏
页码:101 / 112
页数:12
相关论文
共 50 条
  • [21] Quantile regression methods for censored gap time data
    Cheng, Jung-Yu
    Tzeng, Shinn-Jia
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (17) : 5154 - 5165
  • [22] LOCAL LINEAR QUANTILE REGRESSION WITH DEPENDENT CENSORED DATA
    El Ghouch, Anouar
    Van Keilegom, Ingrid
    STATISTICA SINICA, 2009, 19 (04) : 1621 - 1640
  • [23] Semiparametric copula quantile regression for complete or censored data
    De Backer, Mickael
    El Ghouch, Anouar
    Van Keilegom, Ingrid
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (01): : 1660 - 1698
  • [24] Distributed Censored Quantile Regression
    Sit, Tony
    Xing, Yue
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (04) : 1685 - 1697
  • [25] Regression M-estimators with doubly censored data
    Ren, JJ
    Gu, MG
    ANNALS OF STATISTICS, 1997, 25 (06): : 2638 - 2664
  • [26] Censored quantile regression redux
    Koenker, Roger
    JOURNAL OF STATISTICAL SOFTWARE, 2008, 27 (06): : 1 - 25
  • [27] Envelopes for censored quantile regression
    Zhao, Yue
    Van Keilegom, Ingrid
    Ding, Shanshan
    SCANDINAVIAN JOURNAL OF STATISTICS, 2022, 49 (04) : 1562 - 1585
  • [28] Semiparametric regression analysis of multivariate doubly censored data
    Li, Shuwei
    Hu, Tao
    Tong, Tiejun
    Sun, Jianguo
    STATISTICAL MODELLING, 2020, 20 (05) : 502 - 526
  • [29] A semiparametric regression cure model for doubly censored data
    Wang, Peijie
    Tong, Xingwei
    Sun, Jianguo
    LIFETIME DATA ANALYSIS, 2018, 24 (03) : 492 - 508
  • [30] Functional Censored Quantile Regression
    Jiang, Fei
    Cheng, Qing
    Yin, Guosheng
    Shen, Haipeng
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (530) : 931 - 944