Quantile Regression for Doubly Censored Data

被引:21
|
作者
Ji, Shuang [1 ]
Peng, Limin
Cheng, Yu [2 ,3 ]
Lai, HuiChuan [4 ,5 ]
机构
[1] Emory Univ, Rollins Sch Publ Hlth, Dept Biostat & Bioinformat, Atlanta, GA 30322 USA
[2] Univ Pittsburgh, Dept Stat, Pittsburgh, PA 15260 USA
[3] Univ Pittsburgh, Dept Psychiat, Pittsburgh, PA 15260 USA
[4] Univ Wisconsin, Dept Nutr Sci, Madison, WI 53706 USA
[5] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI 53706 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Conditional inference; Double censoring; Empirical process; Martingale; Regression quantile; Truncation; FAILURE TIME MODEL; LINEAR RANK-TESTS; CYSTIC-FIBROSIS; NONPARAMETRIC-ESTIMATION; SURVIVAL ANALYSIS; PSEUDOMONAS-AERUGINOSA; LUNG-DISEASE; M-ESTIMATORS; MORTALITY; EQUATIONS;
D O I
10.1111/j.1541-0420.2011.01667.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Double censoring often occurs in registry studies when left censoring is present in addition to right censoring. In this work, we propose a new analysis strategy for such doubly censored data by adopting a quantile regression model. We develop computationally simple estimation and inference procedures by appropriately using the embedded martingale structure. Asymptotic properties, including the uniform consistency and weak convergence, are established for the resulting estimators. Moreover, we propose conditional inference to address the special identifiability issues attached to the double censoring setting. We further show that the proposed method can be readily adapted to handle left truncation. Simulation studies demonstrate good finite-sample performance of the new inferential procedures. The practical utility of our method is illustrated by an analysis of the onset of the most commonly investigated respiratory infection, Pseudomonas aeruginosa, in children with cystic fibrosis through the use of the U.S. Cystic Fibrosis Registry.
引用
收藏
页码:101 / 112
页数:12
相关论文
共 50 条
  • [1] Quantile regression with doubly censored data
    Lin, Guixian
    He, Xuming
    Portnoy, Stephen
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (04) : 797 - 812
  • [2] Bayesian Quantile Regression for Censored Data
    Reich, Brian J.
    Smith, Luke B.
    BIOMETRICS, 2013, 69 (03) : 651 - 660
  • [3] A quantile regression estimator for censored data
    Leng, Chenlei
    Tong, Xingwei
    BERNOULLI, 2013, 19 (01) : 344 - 361
  • [4] Quantile regression for interval censored data
    Zhou, Xiuqing
    Feng, Yanqin
    Du, Xiuli
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (08) : 3848 - 3863
  • [5] Linear regression with doubly censored data
    Zhang, CH
    Li, X
    ANNALS OF STATISTICS, 1996, 24 (06): : 2720 - 2743
  • [6] Quantile regression for doubly truncated data
    Shen, Pao-sheng
    STATISTICS, 2020, 54 (04) : 649 - 666
  • [7] Transformed Dynamic Quantile Regression on Censored Data
    Chu, Chi Wing
    Sit, Tony
    Xu, Gongjun
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2021, 116 (534) : 874 - 886
  • [8] Single index quantile regression for censored data
    Christou, Eliana
    Akritas, Michael G.
    STATISTICAL METHODS AND APPLICATIONS, 2019, 28 (04): : 655 - 678
  • [9] Comparison of quantile regression curves with censored data
    Tedesco, Lorenzo
    Van Keilegom, Ingrid
    TEST, 2023, 32 (03) : 829 - 864
  • [10] NONPARAMETRIC QUANTILE REGRESSION WITH CENSORED-DATA
    DABROWSKA, DM
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1992, 54 : 252 - 259