Hierarchical least squares identification methods for multivariable systems

被引:283
|
作者
Ding, F [1 ]
Chen, TW
机构
[1] So Yangtze Univ, Control Sci & Engn Res Ctr, Wuxi 214122, Peoples R China
[2] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2V4, Canada
关键词
convergence properties; estimation; hierarchical identification principle; least squares; multivariable systems; recursive identification;
D O I
10.1109/TAC.2005.843856
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For multivariable discrete-time systems described by transfer matrices, we develop a hierarchical least squares iterative (HLSI) algorithm and a hierarchical least squares (HLS) algorithm based on a hierarchical identification principle. We show that the parameter estimation error given by the HLSI algorithm converges to zero for the deterministic cases, and that the parameter estimates by the HLS algorithm consistently converge to the true parameters for the stochastic cases. The algorithms proposed have significant computational advantage over existing identification algorithms. Finally, we test the proposed algorithms on an example and show their effectiveness.
引用
收藏
页码:397 / 402
页数:6
相关论文
共 50 条