Hierarchical least squares identification methods for multivariable systems

被引:283
|
作者
Ding, F [1 ]
Chen, TW
机构
[1] So Yangtze Univ, Control Sci & Engn Res Ctr, Wuxi 214122, Peoples R China
[2] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2V4, Canada
关键词
convergence properties; estimation; hierarchical identification principle; least squares; multivariable systems; recursive identification;
D O I
10.1109/TAC.2005.843856
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For multivariable discrete-time systems described by transfer matrices, we develop a hierarchical least squares iterative (HLSI) algorithm and a hierarchical least squares (HLS) algorithm based on a hierarchical identification principle. We show that the parameter estimation error given by the HLSI algorithm converges to zero for the deterministic cases, and that the parameter estimates by the HLS algorithm consistently converge to the true parameters for the stochastic cases. The algorithms proposed have significant computational advantage over existing identification algorithms. Finally, we test the proposed algorithms on an example and show their effectiveness.
引用
收藏
页码:397 / 402
页数:6
相关论文
共 50 条
  • [21] THE LEAST-SQUARES PADE METHOD FOR MODEL SIMPLIFICATION OF MULTIVARIABLE SYSTEMS
    AGUIRRE, LA
    MENDES, EMAM
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1995, 26 (04) : 819 - 839
  • [22] Least squares identification of monotonic fuzzy systems
    Koo, K
    Won, JM
    Lee, JS
    NAFIPS 2004: ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY, VOLS 1AND 2: FUZZY SETS IN THE HEART OF THE CANADIAN ROCKIES, 2004, : 745 - 749
  • [23] A hierarchical least squares identification algorithm for Hammerstein nonlinear systems using the key term separation
    Ding, Feng
    Chen, Huibo
    Xu, Ling
    Dai, Jiyang
    Li, Qishen
    Hayat, Tasawar
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2018, 355 (08): : 3737 - 3752
  • [24] Hierarchical Least Squares Identification for the Multivariate Input Nonlinear Controlled Autoregressive Moving Average Systems
    Qiu, Fang
    Wang, Lei
    Mu, Wenying
    Ji, Yan
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2025,
  • [25] Dynamic neural networks partial least squares (DNNPLS) identification of multivariable processes
    Adebiyi, OA
    Corripio, AB
    COMPUTERS & CHEMICAL ENGINEERING, 2003, 27 (02) : 143 - 155
  • [26] Robust Kalman filter-based least squares identification of a multivariable system
    Doraiswami, Rajamani
    Cheded, Lahouari
    IET CONTROL THEORY AND APPLICATIONS, 2018, 12 (08): : 1064 - 1074
  • [27] PARAMETRIC IDENTIFICATION OF A STATE-SPACE MODEL OF MULTIVARIABLE SYSTEMS USING THE EXTENDED LEAST-SQUARES METHOD
    ELSHERIEF, H
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1981, 11 (03): : 223 - 227
  • [28] ANALYSIS OF THE IDENTIFICATION OF CLOSED-LOOP SYSTEMS USING LEAST-SQUARES METHODS
    AUDE, EPL
    SANDOZ, DJ
    INTERNATIONAL JOURNAL OF CONTROL, 1986, 43 (02) : 561 - 585
  • [29] Convergence analysis of hierarchical least squares algorithms for MIMO systems
    Ding, F
    Zhu, DQ
    Zou, B
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2006, 13 : 23 - 31
  • [30] Hierarchical least squares based iterative estimation algorithm for multivariable Box-Jenkins-like systems using the auxiliary model
    Zhang, Zhening
    Jia, Jie
    Ding, Ruifeng
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (09) : 5580 - 5587