Variational asymptotic micromechanics modeling of heterogeneous piezoelectric materials

被引:52
|
作者
Tang, Tian [1 ]
Yu, Wenbin [1 ]
机构
[1] Utah State Univ, Dept Mech & Aerosp Engn, Logan, UT USA
基金
美国国家科学基金会;
关键词
piezoelectric heterogeneous materials; variational asymptotic method; mircomechanics; VAMUCH;
D O I
10.1016/j.mechmat.2008.04.007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, a new micromechanics model is developed to predict the effective properties and local fields of heterogeneous piezoelectric materials using the variational asymptotic method for unit cell homogenization (VAMUCH), a recently developed micromechanics modeling technique. Starting from the total electric enthalpy of the heterogenous continuum, we formulate the micromechanics model as a constrained minimization problem using the variational asymptotic method. To handle realistic microstructures in engineering applications, we implement this new model using the finite element method. For validation, a few examples are used to demonstrate the application and accuracy of this theory and the companion computer program - VAMUCH. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:812 / 824
页数:13
相关论文
共 50 条
  • [31] Micromechanics determination of electroelastic properties of piezoelectric materials containing voids
    Wu, TL
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2000, 280 (02): : 320 - 327
  • [32] ON THE MICROMECHANICS MODELING OF MICROCRACK TOUGHENING IN CERAMIC MATERIALS
    GONG, SX
    TRANSACTIONS OF THE CANADIAN SOCIETY FOR MECHANICAL ENGINEERING, 1995, 19 (03) : 317 - 329
  • [33] On the micromechanics modeling of microcrack toughening in ceramic materials
    Univ of Regina, Regina, Sask, Canada
    Trans Can Soc Mech Eng, 3 (317-329):
  • [34] Variational asymptotic homogenization of finitely deformed heterogeneous elastomers
    Zhang, Liang
    Sertse, Hamsasew M.
    Yu, Wenbin
    COMPOSITE STRUCTURES, 2019, 216 : 379 - 391
  • [35] Variational bounds for the effective moduli of heterogeneous piezoelectric solids
    Li, JY
    Dunn, ML
    PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 2001, 81 (04): : 903 - 926
  • [36] Variational bounds for the effective moduli of heterogeneous piezoelectric solids
    Li, Jiang Yu
    Dunn, Martin L.
    2001, Taylor and Francis Ltd. (81):
  • [37] MICROMECHANICS OF RANDOM HETEROGENEOUS MATERIALS: NEW BACKGROUND, OPPORTUNITIES AND PROSPECTS
    Buryachenko, Valeriy A.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2016, VOL. 9, 2017,
  • [38] A micromechanics approach to homogenizing elasto-viscoplastic heterogeneous materials
    Zhang, Liang
    Yu, Wenbin
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2014, 51 (23-24) : 3878 - 3888
  • [39] Multiple-scale micromechanics of heterogeneous piezoelectric media: Defects, ceramics, and composites
    Dunn, ML
    Wienecke, HA
    Li, JY
    US-JAPAN WORKSHOP ON SMART MATERIALS AND STRUCTURES, 1996, : 203 - 215
  • [40] Modeling of Piezocomposites using Variational Asymptotic Method
    Agrawal, Shashank
    Harursampath, Dineshkumar
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648