Variational asymptotic micromechanics modeling of heterogeneous piezoelectric materials

被引:52
|
作者
Tang, Tian [1 ]
Yu, Wenbin [1 ]
机构
[1] Utah State Univ, Dept Mech & Aerosp Engn, Logan, UT USA
基金
美国国家科学基金会;
关键词
piezoelectric heterogeneous materials; variational asymptotic method; mircomechanics; VAMUCH;
D O I
10.1016/j.mechmat.2008.04.007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, a new micromechanics model is developed to predict the effective properties and local fields of heterogeneous piezoelectric materials using the variational asymptotic method for unit cell homogenization (VAMUCH), a recently developed micromechanics modeling technique. Starting from the total electric enthalpy of the heterogenous continuum, we formulate the micromechanics model as a constrained minimization problem using the variational asymptotic method. To handle realistic microstructures in engineering applications, we implement this new model using the finite element method. For validation, a few examples are used to demonstrate the application and accuracy of this theory and the companion computer program - VAMUCH. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:812 / 824
页数:13
相关论文
共 50 条
  • [21] Micromechanical modeling of the multiphysical behavior of smart materials using the variational asymptotic method
    Tang, Tian
    Yu, Wenbin
    SMART MATERIALS & STRUCTURES, 2009, 18 (12):
  • [22] Variational principles for nonlinear piezoelectric materials
    R. Rodríguez-Ramos
    B. E. Pobedria
    P. Padilla
    J. Bravo-Castillero
    R. Guinovart-Díaz
    G. A. Maugin
    Archive of Applied Mechanics, 2004, 74 : 191 - 200
  • [23] Variational principles for nonlinear piezoelectric materials
    Rodríguez-Ramos, R
    Pobedria, BE
    Padilla, P
    Bravo-Castillero, J
    Guinovart-Díaz, R
    Maugin, GA
    ARCHIVE OF APPLIED MECHANICS, 2004, 74 (3-4) : 191 - 200
  • [24] Variational principles for nonlinear piezoelectric materials
    R. Rodríguez-Ramos
    B. E. Pobedria
    P. Padilla
    J. Bravo-Castillero
    R. Guinovart-Díaz
    G. A. Maugin
    Archive of Applied Mechanics, 2004, 74 : 191 - 200
  • [25] Solution of general integral equations of micromechanics of heterogeneous materials
    Buryachenko, Valeriy A.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2014, 51 (23-24) : 3823 - 3843
  • [26] Variational asymptotic homogenization of temperature-dependent heterogeneous materials under finite temperature changes
    Teng, Chong
    Yu, Wenbin
    Chen, Ming Y.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2012, 49 (18) : 2439 - 2449
  • [27] Methods of Micromechanics and Nanoindentation Applied to Heterogeneous Structural Materials
    Nemecek, Jiri
    Kralik, Vlastimil
    Vondrejc, Jaroslav
    Nemeckova, Jitka
    EXPERIMENTALNI ANALYZA NAPETI - EXPERIMENTAL STRESS ANALYSIS, 2011, : 271 - 277
  • [28] A micromechanics theory for homogenization and dehomogenization of aperiodic heterogeneous materials
    Peng, Bo
    Yu, Wenbin
    COMPOSITE STRUCTURES, 2018, 199 : 53 - 62
  • [29] A New Micromechanics Theory for Homogenization and Dehomogenization of Heterogeneous Materials
    Peng, B.
    Yu, W.
    PROCEEDINGS OF THE AMERICAN SOCIETY FOR COMPOSITES: THIRTIETH TECHNICAL CONFERENCE, 2015, : 2176 - 2194
  • [30] ON MICROMECHANICS OF CRACKING IN HETEROGENEOUS MATERIALS UNDER COMPRESSION.
    Kafka, Vratislav
    Acta Technica CSAV (Ceskoslovensk Akademie Ved), 1986, 31 (05): : 563 - 574