Type inference with constrained types

被引:0
|
作者
Odersky, M [1 ]
Sulzmann, M
Wehr, M
机构
[1] Univ S Australia, Sch Comp & Informat Sci, The Levels, SA 5095, Australia
[2] Yale Univ, Dept Comp Sci, New Haven, CT 06520 USA
[3] Univ Edinburgh, LFCS, Edinburgh EH7 3JZ, Midlothian, Scotland
来源
关键词
D O I
10.1002/(SICI)1096-9942(199901/03)5:1<35::AID-TAPO4>3.0.CO;2-4
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We present a general framework HM(X) for type systems with constraints. The framework stays in the tradition of the Hindley/Milner type system. Its type system instances are sound under a standard untyped compositional semantics. We can give a generic type inference algorithm for HM(X) so that, under sufficient conditions on X, type inference will always compute the principal type of a term. We discuss instances of the framework that deal with polymorphic records, equational theories, and subtypes. (C) 1999 John Wiley & Sons, Inc.
引用
收藏
页码:35 / 55
页数:21
相关论文
共 50 条
  • [1] Type inference with constrained types
    Univ of South Australia
    Theor Pract Object Syst, 1 (35-55):
  • [2] Type Inference for Correspondence Types
    Gordon, Andrew D.
    Huttel, Hans
    Hansen, Rene Rydhof
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2009, 242 (03) : 21 - 36
  • [3] TYPE INFERENCE WITH PARTIAL TYPES
    THATTE, SR
    THEORETICAL COMPUTER SCIENCE, 1994, 124 (01) : 127 - 148
  • [4] TYPE INFERENCE WITH PARTIAL TYPES
    THATTE, S
    LECTURE NOTES IN COMPUTER SCIENCE, 1988, 317 : 615 - 629
  • [5] Type inference for nested self types
    Bono, V
    Tiuryn, J
    Urzyczyn, P
    TYPES FOR PROOFS AND PROGRAMS, 2004, 3085 : 99 - 114
  • [6] TYPE INFERENCE FOR PARTIAL TYPES IS DECIDABLE
    OKEEFE, PM
    WAND, M
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 582 : 408 - 417
  • [7] Type inference for variant object types
    Bugliesi, M
    Pericás-Geertsen, SM
    INFORMATION AND COMPUTATION, 2002, 177 (01) : 2 - 27
  • [8] Function types in complete type inference
    Widera, M
    Beierle, C
    TRENDS IN FUNCTIONAL PROGRAMMING 3, 2002, : 111 - 122
  • [9] TYPE INFERENCE WITH RECURSIVE TYPES - SYNTAX AND SEMANTICS
    CARDONE, F
    COPPO, M
    INFORMATION AND COMPUTATION, 1991, 92 (01) : 48 - 80
  • [10] Type Inference for Rank 2 Gradual Intersection Types
    Angelo, Pedro
    Florido, Mario
    TRENDS IN FUNCTIONAL PROGRAMMING, TFP 2019, 2020, 12053 : 84 - 120