Type inference with constrained types

被引:0
|
作者
Odersky, M [1 ]
Sulzmann, M
Wehr, M
机构
[1] Univ S Australia, Sch Comp & Informat Sci, The Levels, SA 5095, Australia
[2] Yale Univ, Dept Comp Sci, New Haven, CT 06520 USA
[3] Univ Edinburgh, LFCS, Edinburgh EH7 3JZ, Midlothian, Scotland
来源
THEORY AND PRACTICE OF OBJECT SYSTEMS | 1999年 / 5卷 / 01期
关键词
D O I
10.1002/(SICI)1096-9942(199901/03)5:1<35::AID-TAPO4>3.0.CO;2-4
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We present a general framework HM(X) for type systems with constraints. The framework stays in the tradition of the Hindley/Milner type system. Its type system instances are sound under a standard untyped compositional semantics. We can give a generic type inference algorithm for HM(X) so that, under sufficient conditions on X, type inference will always compute the principal type of a term. We discuss instances of the framework that deal with polymorphic records, equational theories, and subtypes. (C) 1999 John Wiley & Sons, Inc.
引用
收藏
页码:35 / 55
页数:21
相关论文
共 50 条
  • [21] Expansion: the Crucial Mechanism for Type Inference with Intersection Types: A Survey and Explanation
    Wells, Sebastien Carlier J. B.
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2005, 136 : 173 - 202
  • [22] Constrained gene tree inference
    Mirarab, Siavash
    NATURE ECOLOGY & EVOLUTION, 2017, 1 (02):
  • [23] Constrained inference in linear regression
    Peiris, Thelge Buddika
    Bhattacharya, Bhaskar
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 151 : 133 - 150
  • [24] A Fast Inference and Type-Reduction Process for Constrained Interval Type-2 Fuzzy Systems
    D'Alterio, Pasquale
    Garibaldi, Jonathan M.
    John, Robert, I
    Wagner, Christian
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2021, 29 (11) : 3323 - 3333
  • [25] Constrained types and their expressiveness
    Palsberg, J
    Smith, S
    ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS, 1996, 18 (05): : 519 - 527
  • [26] Entity type inference based on path walking and inter-types relationships
    Gan, Yi
    Su, Zhihui
    Lu, Gaoyong
    Zhang, Pengju
    Cui, Aixiang
    Jiang, Jiawei
    Chen, Duanbing
    DATA & KNOWLEDGE ENGINEERING, 2024, 153
  • [27] An Existential Crisis Resolved Type Inference for First-Class Existential Types
    Eisenberg, Richard A.
    Duboc, Guillaume
    Weirich, Stephanie
    Lee, Daniel
    PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2021, 5
  • [28] Practical Inference of Nullability Types
    Karimipour, Nima
    Pham, Justin
    Clapp, Lazaro
    Sridharan, Manu
    PROCEEDINGS OF THE 31ST ACM JOINT MEETING EUROPEAN SOFTWARE ENGINEERING CONFERENCE AND SYMPOSIUM ON THE FOUNDATIONS OF SOFTWARE ENGINEERING, ESEC/FSE 2023, 2023, : 1395 - 1406
  • [29] Shape-Constrained Statistical Inference
    Dumbgen, Lutz
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, 2024, 11 : 373 - 391
  • [30] EFFICIENT INFERENCE OF PARTIAL TYPES
    KOZEN, D
    PALSBERG, J
    SCHWARTZBACH, MI
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1994, 49 (02) : 306 - 324