TYPE INFERENCE WITH PARTIAL TYPES

被引:1
|
作者
THATTE, SR
机构
[1] Department of Mathematics and Computer Science, Clarkson University, Potsdam
关键词
D O I
10.1016/0304-3975(94)90056-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
As a partial solution to the problem of combining static and dynamic typing in a language with parametric polymorphism, this paper introduces a new form of type expressions which represent partial type information. These expressions are meant to capture the type information statically derivable from heterogeneous objects. The new ground types form a semilattice of subtypes and require type inference based on inclusion constraints. We discuss the existence and form of principal types under this extension and present a semi-decision procedure for the complete type inference problem.
引用
收藏
页码:127 / 148
页数:22
相关论文
共 50 条
  • [1] TYPE INFERENCE WITH PARTIAL TYPES
    THATTE, S
    LECTURE NOTES IN COMPUTER SCIENCE, 1988, 317 : 615 - 629
  • [2] TYPE INFERENCE FOR PARTIAL TYPES IS DECIDABLE
    OKEEFE, PM
    WAND, M
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 582 : 408 - 417
  • [3] SAFETY ANALYSIS VERSUS TYPE INFERENCE FOR PARTIAL TYPES
    PALSBERG, J
    SCHWARTZBACH, MI
    INFORMATION PROCESSING LETTERS, 1992, 43 (04) : 175 - 180
  • [4] EFFICIENT INFERENCE OF PARTIAL TYPES
    KOZEN, D
    PALSBERG, J
    SCHWARTZBACH, MI
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1994, 49 (02) : 306 - 324
  • [5] Efficient inference of partial types
    Kozen, Dexter
    Palsberg, Jens
    Schwartzbach, Michael I.
    Journal of Computer and System Sciences, 1994, 49 (02): : 306 - 324
  • [6] Type Inference for Correspondence Types
    Gordon, Andrew D.
    Huttel, Hans
    Hansen, Rene Rydhof
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2009, 242 (03) : 21 - 36
  • [7] Type inference with constrained types
    Odersky, M
    Sulzmann, M
    Wehr, M
    THEORY AND PRACTICE OF OBJECT SYSTEMS, 1999, 5 (01): : 35 - 55
  • [8] Type inference with constrained types
    Univ of South Australia
    Theor Pract Object Syst, 1 (35-55):
  • [9] Type inference for nested self types
    Bono, V
    Tiuryn, J
    Urzyczyn, P
    TYPES FOR PROOFS AND PROGRAMS, 2004, 3085 : 99 - 114
  • [10] Type inference for variant object types
    Bugliesi, M
    Pericás-Geertsen, SM
    INFORMATION AND COMPUTATION, 2002, 177 (01) : 2 - 27