Offline and online identification of hidden semi-Markov models

被引:21
|
作者
Azimi, M [1 ]
Nasiopoulos, P [1 ]
Ward, RK [1 ]
机构
[1] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6K 1Z4, Canada
关键词
expectation maximization (EM) algorithm; recursive maximum likelihood (RML); recursive prediction error (RPE); semi-Markov models;
D O I
10.1109/TSP.2005.850344
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a new signal model for hidden semi-Markov models (HSMMs). Instead of constant transition probabilities used in existing models, we use state-duration-dependant transition probabilities. We show that our modeling approach leads to easy and efficient implementation of parameter identification algorithms. Then, we present a variant of the EM algorithm and an adaptive algorithm for parameter identification of HSMMs in the offline and online cases, respectively.
引用
收藏
页码:2658 / 2663
页数:6
相关论文
共 50 条
  • [41] The use of hidden semi-Markov models in clinical diagnosis maze tasks
    Marhasev, Einat
    Hadad, Meirav
    Kaminka, Gal A.
    Feintuch, Uri
    INTELLIGENT DATA ANALYSIS, 2009, 13 (06) : 943 - 967
  • [42] On robust estimation of hidden semi-Markov regime-switching models
    Qin, Shanshan
    Tan, Zhenni
    Wu, Yuehua
    ANNALS OF OPERATIONS RESEARCH, 2024, 338 (2-3) : 1049 - 1081
  • [43] MCMC implementation for Bayesian hidden semi-Markov models with illustrative applications
    Theodoros Economou
    Trevor C. Bailey
    Zoran Kapelan
    Statistics and Computing, 2014, 24 : 739 - 752
  • [44] Exact score and information matrix for panel hidden semi-Markov models
    Farcomeni, Alessio
    STATISTICS AND COMPUTING, 2025, 35 (03)
  • [45] Stylized facts of financial time series and hidden semi-Markov models
    Bulla, Jan
    Bulla, Ingo
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (04) : 2192 - 2209
  • [46] A new signal model and identification algorithm for Hidden Semi-Markov signals
    Azimi, M
    Nasiopoulos, P
    Ward, RK
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PROCEEDINGS: SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING SIGNAL PROCESSING THEORY AND METHODS, 2004, : 521 - 524
  • [47] Asynchronous Brain Computer Interface using Hidden Semi-Markov Models
    Oliver, Gareth
    Sunehag, Peter
    Gedeon, Tom
    2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 2728 - 2731
  • [48] Load-Haul Cycle Segmentation with Hidden Semi-Markov Models
    Markham, Georgia
    Seiler, Konstantin M.
    Balamurali, Mehala
    Hill, Andrew J.
    2022 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2022, : 447 - 454
  • [49] Inhomogeneous hidden semi-Markov models for incompletely observed point processes
    Amina Shahzadi
    Ting Wang
    Mark Bebbington
    Matthew Parry
    Annals of the Institute of Statistical Mathematics, 2023, 75 : 253 - 280
  • [50] Development of hidden semi-Markov models for diagnosis of multiphase batch operation
    Chen, Junghui
    Jiang, Yan-Cheng
    CHEMICAL ENGINEERING SCIENCE, 2011, 66 (06) : 1087 - 1099