Offline and online identification of hidden semi-Markov models

被引:21
|
作者
Azimi, M [1 ]
Nasiopoulos, P [1 ]
Ward, RK [1 ]
机构
[1] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6K 1Z4, Canada
关键词
expectation maximization (EM) algorithm; recursive maximum likelihood (RML); recursive prediction error (RPE); semi-Markov models;
D O I
10.1109/TSP.2005.850344
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a new signal model for hidden semi-Markov models (HSMMs). Instead of constant transition probabilities used in existing models, we use state-duration-dependant transition probabilities. We show that our modeling approach leads to easy and efficient implementation of parameter identification algorithms. Then, we present a variant of the EM algorithm and an adaptive algorithm for parameter identification of HSMMs in the offline and online cases, respectively.
引用
收藏
页码:2658 / 2663
页数:6
相关论文
共 50 条
  • [21] Recursive maximum likelihood estimation for hidden semi-Markov models
    Squire, K
    Levinson, SE
    2005 IEEE WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2005, : 329 - 334
  • [22] Optimal Detection and Error Exponents for Hidden Semi-Markov Models
    Bajovic, Dragana
    He, Kanghang
    Stankovic, Lina
    Vukobratovic, Dejan
    Stankovic, Vladimir
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2018, 12 (05) : 1077 - 1092
  • [23] ACTIVITY RECOGNITION USING LOGICAL HIDDEN SEMI-MARKOV MODELS
    Zha, Ya-Bing
    Yue, Shi-Guang
    Yin, Quan-Jun
    Liu, Xiao-Cheng
    2013 10TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2013, : 77 - 84
  • [24] Unsupervised Classification of Human Activity with Hidden Semi-Markov Models
    Cavallo, Francesca Romana
    Toumazou, Christofer
    Nikolic, Konstantin
    APPLIED SYSTEM INNOVATION, 2022, 5 (04)
  • [25] Modified hidden semi-Markov models for motor wear prognosis
    Wu, X.
    Li, Y.
    Teng, W.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART J-JOURNAL OF ENGINEERING TRIBOLOGY, 2012, 226 (J2) : 174 - 179
  • [26] Hidden semi-Markov models for machinery health diagnosis and prognosis
    Dong, M
    He, D
    TRANSACTIONS OF THE NORTH AMERICAN MANUFACTURING RESEARCH INSTITUTION OF SME, VOL 32, 2004, 2004, : 199 - 206
  • [27] Quantile hidden semi-Markov models for multivariate time series
    Merlo, Luca
    Maruotti, Antonello
    Petrella, Lea
    Punzo, Antonio
    STATISTICS AND COMPUTING, 2022, 32 (04)
  • [28] Quantile hidden semi-Markov models for multivariate time series
    Luca Merlo
    Antonello Maruotti
    Lea Petrella
    Antonio Punzo
    Statistics and Computing, 2022, 32
  • [29] Initialization of Hidden Markov and Semi-Markov Models: A Critical Evaluation of Several Strategies
    Maruotti, Antonello
    Punzo, Antonio
    INTERNATIONAL STATISTICAL REVIEW, 2021, 89 (03) : 447 - 480
  • [30] Semi-Markov Offline Reinforcement Learning for Healthcare
    Fatemi, Mehdi
    Wu, Mary
    Petch, Jeremy
    Nelson, Walter
    Connolly, Stuart J.
    Benz, Alexander
    Carnicelli, Anthony
    Ghassemi, Marzyeh
    CONFERENCE ON HEALTH, INFERENCE, AND LEARNING, VOL 174, 2022, 174 : 119 - 137