Correlation widths in quantum-chaotic scattering

被引:6
|
作者
Dietz, B. [1 ]
Richter, A. [1 ,3 ]
Weidenmueller, H. A. [2 ]
机构
[1] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany
[2] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany
[3] ECT, I-38123 Villazzano, Trento, Italy
关键词
Compound nucleus; Cross-section correlation function; Weisskopf estimate; COMPOUND-NUCLEUS SCATTERING; S-MATRIX; CROSS SECTIONS; FLUCTUATIONS; RESONANCES; CAVITIES; PHYSICS; STATISTICS; ABSORPTION; ELEMENTS;
D O I
10.1016/j.physletb.2011.02.009
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
An important parameter to characterize the scattering matrix S for quantum-chaotic scattering is the width Gamma(corr) of the S-matrix autocorrelation function. We show that the "Weisskopf estimate" d/(2 pi) Sigma T-c(c) (where d is the mean resonance spacing, T-c with 0 <= T-c <= 1 the "transmission coefficient" in channel c and where the sum runs over all channels) provides a good approximation to Gamma(corr) even when the number of channels is small. That same conclusion applies also to the cross-section correlation function. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:313 / 317
页数:5
相关论文
共 50 条
  • [21] Generation of Squeezed States in a System of Nonlinear Quantum Oscillator as an Indicator of the Quantum-Chaotic Dynamics
    Kalaga, J. K.
    Jarosik, M. W.
    Szczesniak, R.
    Leonski, W.
    ACTA PHYSICA POLONICA A, 2019, 135 (02) : 270 - 272
  • [22] Entanglement in many-body eigenstates of quantum-chaotic quadratic Hamiltonians
    Lydzba, Patrycja
    Rigol, Marcos
    Vidmar, Lev
    PHYSICAL REVIEW B, 2021, 103 (10)
  • [23] Systematic analytical approach to correlation functions of resonances in quantum chaotic scattering
    Fyodorov, YV
    Khoruzhenko, BA
    PHYSICAL REVIEW LETTERS, 1999, 83 (01) : 65 - 68
  • [24] Quantum-chaotic key distribution in optical networks: from secrecy to implementation with logistic map
    do Nascimento, J. C.
    Damasceno, R. L. C.
    de Oliveira, G. L.
    Ramos, R. V.
    QUANTUM INFORMATION PROCESSING, 2018, 17 (12)
  • [25] Quantum-chaotic key distribution in optical networks: from secrecy to implementation with logistic map
    J. C. do Nascimento
    R. L. C. Damasceno
    G. L. de Oliveira
    R. V. Ramos
    Quantum Information Processing, 2018, 17
  • [26] Trends in quantum chaotic scattering
    Fyodorov, YV
    Kottos, T
    Stöckmann, HJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (49):
  • [27] QUANTUM MANIFESTATIONS OF CHAOTIC SCATTERING
    LAI, YC
    BLUMEL, R
    OTT, E
    GREBOGI, C
    PHYSICAL REVIEW LETTERS, 1992, 68 (24) : 3491 - 3494
  • [28] Quantum resonances in chaotic scattering
    Lin, KK
    Zworski, M
    CHEMICAL PHYSICS LETTERS, 2002, 355 (1-2) : 201 - 205
  • [29] QUANTUM CORRECTIONS FOR CHAOTIC SCATTERING
    JENSEN, JH
    PHYSICAL REVIEW A, 1992, 45 (12): : 8530 - 8535
  • [30] CHAOTIC PROPERTIES IN QUANTUM SCATTERING
    JAUSLIN, HR
    PHYSICA D, 1991, 51 (1-3): : 200 - 204