On-load motor parameter identification using univariate dynamic encoding algorithm for searches

被引:17
|
作者
Kim, Jong-Wook [1 ]
Kim, Taegyu [1 ]
Park, Youngsu [2 ]
Kim, Sang Woo [2 ]
机构
[1] Dong A Univ, Dept Elect Engn, Pusan 604714, South Korea
[2] Pohang Univ Sci & Technol, Div Elect & Comp Engn, Pohang 790784, Gyoengbuk, South Korea
关键词
dynamic encoding algorithm for searches (DEAS); genetic algorithm (GA); induction motor; parameter identification;
D O I
10.1109/TEC.2008.926068
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Parameter identification of an induction motor has long been studied either for vector control or fault diagnosis. This paper addresses parameter identification of an induction motor under on-load operation. For estimating electrical and mechanical parameters in the motor model from the on-load data, unmeasured initial states and load torque profile have to be also estimated for state evaluation. Since gradient of cost function for the auxiliary variables are hard to be derived, direct optimization methods that rely on computational capability should be employed. In this paper, the univariate dynamic encoding algorithm for searches (uDEAS), recently developed by the authors, is applied to the identification of whole unknown variables with measured voltage, current, and velocity data. Profiles of motor parameters estimated with uDEAS are reasonable, and estimation time is 2 s on average, which is quite fast as compared with other direct optimization methods.
引用
收藏
页码:804 / 813
页数:10
相关论文
共 50 条
  • [31] Marine Asynchronous Propulsion Motor Parameter Identification Using Dynamic Particle Swarm Optimization
    Liu, Siyuan
    Liu, Yancheng
    Wang, Chuan
    Ren, Junjie
    ENERGY DEVELOPMENT, PTS 1-4, 2014, 860-863 : 2211 - 2217
  • [32] Parameter Identification of Permanent Magnet Synchronous Motor with Dynamic Forgetting Factor Based on H∞ Filtering Algorithm
    Yuan, Tianqing
    Chang, Jiu
    Zhang, Yupeng
    ACTUATORS, 2023, 12 (12)
  • [33] Parameter identification improvement of dynamic load model in power system
    Mizuo, Kensuke
    Komami, Shintaro
    IEEJ Transactions on Power and Energy, 2012, 132 (01): : 71 - 76
  • [34] MATCHING A MOTOR TO ITS LOAD USING DYNAMIC MOTOR CHARACTERISTICS
    JONES, DH
    CONTROL ENGINEERING, 1975, 22 (02) : 34 - 37
  • [35] Identification of structure dynamic parameter based on an immune algorithm
    Ma, Z.-Y., 2005, Editorial Office of Chinese Journal of Computational Mechanics (22):
  • [36] An encoding algorithm for IFS coding of homogeneous fractal images using univariate polynomial manipulation
    Abiko, T
    Kawamata, M
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1999, E82A (08) : 1435 - 1442
  • [37] Enhancement of Dynamic Encoding Algorithm for Searches (DEAS) via modified decoding function and hopping operation
    Kim, Nam-Geun
    Yun, Jong Pil
    Kim, Sang Woo
    ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 5, PROCEEDINGS, 2007, : 14 - +
  • [38] Off-Line Parameter Identification of Permanent Magnet Synchronous Motor Using a Goertzel Algorithm
    Yoon, Jae-Seung
    Lee, Kyoung-Gu
    Lee, June-Seok
    Lee, Kyo-Beum
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2015, 10 (06) : 2262 - 2270
  • [39] Load modeling of electric locomotive using parameter identification
    Kim, J
    Lee, C
    Han, M
    Shim, K
    Kim, JH
    PROCEEDINGS OF THE EIGHTH IASTED INTERNATIONAL CONFERENCE ON POWER AND ENERGY SYSTEMS, 2005, : 106 - 111
  • [40] The Induction Motor Parameter Estimation Using Genetic Algorithm
    Fortes, M. Z.
    Ferreira, V. H.
    Coelho, A. P. F.
    IEEE LATIN AMERICA TRANSACTIONS, 2013, 11 (05) : 1273 - 1278