On-load motor parameter identification using univariate dynamic encoding algorithm for searches

被引:17
|
作者
Kim, Jong-Wook [1 ]
Kim, Taegyu [1 ]
Park, Youngsu [2 ]
Kim, Sang Woo [2 ]
机构
[1] Dong A Univ, Dept Elect Engn, Pusan 604714, South Korea
[2] Pohang Univ Sci & Technol, Div Elect & Comp Engn, Pohang 790784, Gyoengbuk, South Korea
关键词
dynamic encoding algorithm for searches (DEAS); genetic algorithm (GA); induction motor; parameter identification;
D O I
10.1109/TEC.2008.926068
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Parameter identification of an induction motor has long been studied either for vector control or fault diagnosis. This paper addresses parameter identification of an induction motor under on-load operation. For estimating electrical and mechanical parameters in the motor model from the on-load data, unmeasured initial states and load torque profile have to be also estimated for state evaluation. Since gradient of cost function for the auxiliary variables are hard to be derived, direct optimization methods that rely on computational capability should be employed. In this paper, the univariate dynamic encoding algorithm for searches (uDEAS), recently developed by the authors, is applied to the identification of whole unknown variables with measured voltage, current, and velocity data. Profiles of motor parameters estimated with uDEAS are reasonable, and estimation time is 2 s on average, which is quite fast as compared with other direct optimization methods.
引用
收藏
页码:804 / 813
页数:10
相关论文
共 50 条
  • [21] Asynchronous Motor Control Algorithm with Parameter Identification
    Samoseiko, Veniamin F.
    Saushev, Alecsander, V
    Belousova, Nadezhda, V
    2019 INTERNATIONAL URAL CONFERENCE ON ELECTRICAL POWER ENGINEERING (URALCON), 2019, : 284 - 289
  • [22] Parameter Identification of Induction Motor Using Modified Particle Swarm Optimization Algorithm
    Emara, Hassan M.
    Elshamy, Wesam
    Bahgat, A.
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, VOLS 1-5, 2008, : 2194 - +
  • [23] PARAMETER IDENTIFICATION OF A SINGLE-PHASE INDUCTION MOTOR USING RLS ALGORITHM
    Vieira, Rodrigo Padilha
    Azzolin, Rodrigo Zelir
    Gruendling, Hilton Abilio
    2009 BRAZILIAN POWER ELECTRONICS CONFERENCE, VOLS 1 AND 2, 2009, : 824 - 830
  • [24] Diagnosis of On-Load Tap Changer (OLTC) Using Dynamic Resistance Measurement
    Aziz, Mohd Azhar Abdul
    Talib, Mohd Aizam
    Arumugam, Ragavan
    2014 IEEE 8TH INTERNATIONAL POWER ENGINEERING AND OPTIMIZATION CONFERENCE (PEOCO), 2014, : 494 - 497
  • [25] Evolutionary programming algorithm for load modeling and parameter identification
    Tsinghua Univ, Beijing, China
    Qinghua Daxue Xuebao, 3 (37-40):
  • [26] Optimization of Solar/Fuel Cell Hybrid Energy System Using the Combinatorial Dynamic Encoding Algorithm for Searches (cDEAS)
    Kim, Jong-Wook
    Ahn, Heungju
    Seo, Hyeon Cheol
    Lee, Sang Cheol
    ENERGIES, 2022, 15 (08)
  • [27] Genetic algorithm for parameter identification of SACS motor testing
    Xu, DG
    Li, YF
    Shi, JZ
    Guo, N
    IEEE INTERNATIONAL SYMPOSIUM ON DIAGNOSTICS FOR ELECTRIC MACHINES, POWER ELECTRONICS AND DRIVES, PROCEEDINGS, 2003, : 99 - 102
  • [28] PS algorithm in load parameter identification and its comparison with genetic algorithm
    Cheng, Ying
    Ju, Ping
    Wu, Feng
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2003, 27 (11): : 25 - 29
  • [29] Dynamic Parameter Identification using Scattered Search Algorithm from DPR Data
    Challa, Kiran Kumar
    Gurrala, Gurunath
    2024 IEEE KANSAS POWER AND ENERGY CONFERENCE, KPEC 2024, 2024,
  • [30] Automatic defect inspection system for steel products with exhaustive dynamic encoding algorithm for searches
    Yun, Jong Pil
    Lee, Sang Jun
    Koo, Gyogwon
    Shin, Crino
    Park, ChangHyun
    OPTICAL ENGINEERING, 2019, 58 (02)