Visual tracking achieved by adaptive sampling from hierarchical and parallel predictions

被引:0
|
作者
Shibata, Tomohiro [1 ]
Bando, Takashi [2 ]
Ishii, Shin [1 ,3 ]
机构
[1] Nara Inst Sci & Technol, Grad Sch Informat Sci, Nara, Japan
[2] DENSO Corp, Kariya, Aichi, Japan
[3] Kyoto Univ, Grad Sch Informat, Kyoto 6068501, Japan
来源
NEURAL INFORMATION PROCESSING, PART I | 2008年 / 4984卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Because the inevitable ill-posedness exists in the visual information, the brain essentially needs some prior knowledge, prediction, or hypothesis to acquire a meaningful solution. From computational point of view, visual tracking is the real-time process of statistical spatiotemporal. filtering of target states from an image stream, and incremental Bayesian computation is one of the most important devices. To make Bayesian computation of the posterior density of state variables tractable for any types of probability distribution, Particle Filters (PFs) have been often employed in the real-time vision area. In this paper, we briefly review incremental Bayesian computation and PFs for visual tracking, indicate drawbacks of PFs, and then propose our framework, in which hierarchical and parallel predictions are integrated by adaptive sampling to achieve appropriate balancing of tracking accuracy and robustness. Finally, we discuss the proposed model from the viewpoint of neuroscience.
引用
收藏
页码:604 / +
页数:2
相关论文
共 50 条
  • [31] MONTE CARLO SAMPLING FOR VISUAL POSE TRACKING
    Lee, Jehoon
    Sandhu, Romeil
    Tannenbaum, Allen
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 501 - 504
  • [32] SMART: Joint Sampling and Regression for Visual Tracking
    Gao, Junyu
    Zhang, Tianzhu
    Xu, Changsheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (08) : 3923 - 3935
  • [33] Adaptive Hierarchical Siamese Network for Object Tracking
    Fang, Yongfeng
    Wu, Yun
    Sun, Bingyu
    Cui, Chaoyuan
    PROCEEDINGS OF ICRCA 2018: 2018 THE 3RD INTERNATIONAL CONFERENCE ON ROBOTICS, CONTROL AND AUTOMATION / ICRMV 2018: 2018 THE 3RD INTERNATIONAL CONFERENCE ON ROBOTICS AND MACHINE VISION, 2018, : 249 - 254
  • [34] Adaptive Framework for Robust Visual Tracking
    Abdelpakey, Mohamed H.
    Shehata, Mohamed S.
    Mohamed, Mostafa M.
    Gong, Minglun
    IEEE ACCESS, 2018, 6 : 55273 - 55283
  • [35] ADAPTIVE FEATURE REPRESENTATION FOR VISUAL TRACKING
    Han, Yuqi
    Deng, Chenwei
    Zhang, Zengshuo
    Li, Jiatong
    Zhao, Baojun
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 1867 - 1870
  • [36] Adaptive Visual Tracking with Failure Detection
    Lu, Ping
    Deng, Shuo
    Gao, Yan
    Zheng, Weiwei
    Yu, Huimin
    2015 8TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP), 2015, : 12 - 17
  • [37] Adaptive NormalHedge for robust visual tracking
    Zhang, Shengping
    Zhou, Huiyu
    Yao, Hongxun
    Zhang, Yanhao
    Wang, Kuanquan
    Zhang, Jun
    SIGNAL PROCESSING, 2015, 110 : 132 - 142
  • [38] PARALLEL INTERACTING MARKOV ADAPTIVE IMPORTANCE SAMPLING
    Martino, Luca
    Elvira, Victor
    Luengo, David
    Corander, Jukka
    2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 499 - 503
  • [39] An Adaptive Sampling Target Tracking Method of WMSNs
    Tian, Shikun
    Jin, Xinyu
    Zhang, Yu
    ADVANCES IN SWARM INTELLIGENCE, PT 2, PROCEEDINGS, 2010, 6146 : 188 - 195
  • [40] Parallel Dual Networks for Visual Object Tracking
    Tian Li
    Peihan Wu
    Feifei Ding
    Wenyuan Yang
    Applied Intelligence, 2020, 50 : 4631 - 4646