Visual tracking achieved by adaptive sampling from hierarchical and parallel predictions

被引:0
|
作者
Shibata, Tomohiro [1 ]
Bando, Takashi [2 ]
Ishii, Shin [1 ,3 ]
机构
[1] Nara Inst Sci & Technol, Grad Sch Informat Sci, Nara, Japan
[2] DENSO Corp, Kariya, Aichi, Japan
[3] Kyoto Univ, Grad Sch Informat, Kyoto 6068501, Japan
来源
NEURAL INFORMATION PROCESSING, PART I | 2008年 / 4984卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Because the inevitable ill-posedness exists in the visual information, the brain essentially needs some prior knowledge, prediction, or hypothesis to acquire a meaningful solution. From computational point of view, visual tracking is the real-time process of statistical spatiotemporal. filtering of target states from an image stream, and incremental Bayesian computation is one of the most important devices. To make Bayesian computation of the posterior density of state variables tractable for any types of probability distribution, Particle Filters (PFs) have been often employed in the real-time vision area. In this paper, we briefly review incremental Bayesian computation and PFs for visual tracking, indicate drawbacks of PFs, and then propose our framework, in which hierarchical and parallel predictions are integrated by adaptive sampling to achieve appropriate balancing of tracking accuracy and robustness. Finally, we discuss the proposed model from the viewpoint of neuroscience.
引用
收藏
页码:604 / +
页数:2
相关论文
共 50 条
  • [21] Hierarchical appearance models in visual tracking
    Zajc, Luka Cehovin
    Leonardis, Ales
    Kristan, Matej
    ELEKTROTEHNISKI VESTNIK, 2016, 83 (05): : 217 - 224
  • [22] Visual Tracking by Sampling in Part Space
    Huang, Lianghua
    Ma, Bo
    Shen, Jianbing
    He, Hui
    Shao, Ling
    Porikli, Fatih
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (12) : 5800 - 5810
  • [23] Parallel tensor sampling in the hierarchical Tucker format
    Grasedyck, Lars
    Kriemann, Ronald
    Loebbert, Christian
    Naegel, Arne
    Wittum, Gabriel
    Xylouris, Konstantinos
    COMPUTING AND VISUALIZATION IN SCIENCE, 2015, 17 (02) : 67 - 78
  • [24] An adaptive parallel hierarchical clustering algorithm
    Li, Zhaopeng
    Li, Kenli
    Xiao, Degui
    Yang, Lei
    HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS, PROCEEDINGS, 2007, 4782 : 97 - 107
  • [25] Parallel Adaptive Sampling with Almost No Synchronization
    van Der Grinten, Alexander
    Angriman, Eugenio
    Meyerhenke, Henning
    EURO-PAR 2019: PARALLEL PROCESSING, 2019, 11725 : 434 - 447
  • [26] Oil Plume Mapping: Adaptive Tracking and Adaptive Sampling From an Autonomous Underwater Vehicle
    Hwang, Jimin
    Bose, Neil
    Nguyen, Hung Duc
    Williams, Guy
    IEEE ACCESS, 2020, 8 : 198021 - 198034
  • [27] Parallel Tracker for Visual Object Tracking
    Liang, Xiangluan
    Lai, Ru
    Bi, Luzheng
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 5676 - 5681
  • [28] Adaptive chaotic sampling particle filter to handle occlusion and fast motion in visual object tracking
    Firouznia, Marjan
    Koupaei, Javad Alikhani
    Faez, Karim
    Trunfio, Giuseppe A.
    Amindavar, Hamidreza
    DIGITAL SIGNAL PROCESSING, 2023, 134
  • [29] Adaptive hierarchical architecture for visual recognition
    Tivive, Fok H. C.
    Bouzerdoum, Abdesselam
    Phung, Son Lam
    Iftekharuddin, Khan M.
    APPLIED OPTICS, 2010, 49 (10) : B1 - B8
  • [30] Hierarchical Graph Transformer with Adaptive Node Sampling
    Zhang, Zaixi
    Liu, Qi
    Hu, Qingyong
    Lee, Chee-Kong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,