On some lie bialgebra structures on polynomial algebras and their quantization

被引:14
|
作者
Khoroshkin, S. M. [1 ]
Pop, I. I. [2 ]
Samsonov, M. E. [3 ]
Stolin, A. A. [2 ]
Tolstoy, V. N. [4 ]
机构
[1] Inst Theoret & Expt Phys, Moscow 117259, Russia
[2] Gothenburg Univ, Dept Math, Gothenburg, Sweden
[3] Dublin Inst Adv Studies, Dublin 4, Ireland
[4] Moscow MV Lomonosov State Univ, Inst Nucl Phys, Moscow, Russia
关键词
D O I
10.1007/s00220-008-0554-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study classical twists of Lie bialgebra structures on the polynomial current algebra g[u], where g is a simple complex finite-dimensional Lie algebra. We focus on the structures induced by the so-called quasi-trigonometric solutions of the classical Yang-Baxter equation. It turns out that quasi-trigonometric r-matrices fall into classes labelled by the vertices of the extended Dynkin diagram of g. We give the complete classification of quasi-trigonometric r-matrices belonging to multiplicity free simple roots (which have coefficient 1 in the decomposition of the maximal root). We quantize solutions corresponding to the first root of sl(n).
引用
收藏
页码:625 / 662
页数:38
相关论文
共 50 条
  • [41] Lie super-bialgebra structures on the Lie superalgebra of Witt type
    Yue, Xiaoqing
    Zhu, Xiaoyu
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (11) : 4989 - 5003
  • [42] Lie bialgebra structures on derivation Lie algebra over quantum tori
    Xiaomin Tang
    Lijuan Liu
    Jinli Xu
    Frontiers of Mathematics in China, 2017, 12 : 949 - 965
  • [43] Lie Bialgebra Structures on the Extended Schrodinger-Virasoro Lie Algebra
    Yuan, Lamei
    Wu, Yongping
    Xu, Ying
    ALGEBRA COLLOQUIUM, 2011, 18 (04) : 709 - 720
  • [44] ON SOME PROPERTIES OF POLYNOMIAL-MAPPINGS, CONNECTED WITH LIE-ALGEBRAS
    CHALYKH, OA
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1988, (03): : 57 - 59
  • [45] QUANTIZATION OF LIE ALGEBRAS OF BLOCK TYPE
    程永胜
    苏育才
    ActaMathematicaScientia, 2010, 30 (04) : 1134 - 1142
  • [46] CHARGE QUANTIZATION AND NONINTEGRABLE LIE ALGEBRAS
    HURST, CA
    ANNALS OF PHYSICS, 1968, 50 (01) : 51 - &
  • [47] QUANTIZATION OF LIE ALGEBRAS OF BLOCK TYPE
    Cheng Yongsheng
    Su Yucai
    ACTA MATHEMATICA SCIENTIA, 2010, 30 (04) : 1134 - 1142
  • [48] LIE BIALGEBRA CONTRACTIONS AND QUANTUM DEFORMATIONS OF QUASI-ORTHOGONAL ALGEBRAS
    BALLESTEROS, A
    GROMOV, NA
    HERRANZ, FJ
    DELOLMO, MA
    SANTANDER, M
    JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (10) : 5916 - 5937
  • [49] Deformation quantization of polynomial Poisson algebras
    Penkava, M
    Vanhaecke, P
    JOURNAL OF ALGEBRA, 2000, 227 (01) : 365 - 393
  • [50] Lie algebras of triangular polynomial derivations and an isomorphism criterion for their Lie factor algebras
    Bavula, V. V.
    IZVESTIYA MATHEMATICS, 2013, 77 (06) : 1067 - 1104