On some lie bialgebra structures on polynomial algebras and their quantization

被引:14
|
作者
Khoroshkin, S. M. [1 ]
Pop, I. I. [2 ]
Samsonov, M. E. [3 ]
Stolin, A. A. [2 ]
Tolstoy, V. N. [4 ]
机构
[1] Inst Theoret & Expt Phys, Moscow 117259, Russia
[2] Gothenburg Univ, Dept Math, Gothenburg, Sweden
[3] Dublin Inst Adv Studies, Dublin 4, Ireland
[4] Moscow MV Lomonosov State Univ, Inst Nucl Phys, Moscow, Russia
关键词
D O I
10.1007/s00220-008-0554-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study classical twists of Lie bialgebra structures on the polynomial current algebra g[u], where g is a simple complex finite-dimensional Lie algebra. We focus on the structures induced by the so-called quasi-trigonometric solutions of the classical Yang-Baxter equation. It turns out that quasi-trigonometric r-matrices fall into classes labelled by the vertices of the extended Dynkin diagram of g. We give the complete classification of quasi-trigonometric r-matrices belonging to multiplicity free simple roots (which have coefficient 1 in the decomposition of the maximal root). We quantize solutions corresponding to the first root of sl(n).
引用
收藏
页码:625 / 662
页数:38
相关论文
共 50 条
  • [21] Existence of triangular Lie bialgebra structures
    Feldvoss, J
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1999, 134 (01) : 1 - 14
  • [22] Quantization of Lie bialgebras and shuffle algebras of Lie algebras
    Enriques B.
    Selecta Mathematica, 2001, 7 (3) : 321 - 407
  • [23] Polynomial Lie algebras
    Buchstaber, VM
    Leykin, DV
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2002, 36 (04) : 267 - 280
  • [24] Polynomial Lie Algebras
    V. M. Buchstaber
    D. V. Leykin
    Functional Analysis and Its Applications, 2002, 36 : 267 - 280
  • [25] Lie Bialgebra Structures on the Lie Algebra £ Related to the Virasoro Algebra
    Chen, Xue
    Su, Yihong
    Zheng, Jia
    SYMMETRY-BASEL, 2023, 15 (01):
  • [26] Dual Lie bialgebra structures of Poisson types
    SONG Guang'Ai
    SU YuCai
    Science China(Mathematics), 2015, 58 (06) : 1151 - 1162
  • [27] Lie bialgebra structures on the Schrodinger-Virasoro Lie algebra
    Han, Jianzhi
    Li, Junbo
    Su, Yucai
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (08)
  • [28] Lie super-bialgebra and quantization of the super Virasoro algebra
    Yuan, Lamei
    He, Caixia
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (05)
  • [29] Polynomial Automorphisms, Deformation Quantization and Some Applications on Noncommutative Algebras
    Zhang, Wenchao
    Yavich, Roman
    Belov-Kanel, Alexei
    Razavinia, Farrokh
    Elishev, Andrey
    Yu, Jietai
    MATHEMATICS, 2022, 10 (22)
  • [30] Dual Lie bialgebra structures of Poisson types
    Song Guang'Ai
    Su YuCai
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (06) : 1151 - 1162