On some lie bialgebra structures on polynomial algebras and their quantization

被引:14
|
作者
Khoroshkin, S. M. [1 ]
Pop, I. I. [2 ]
Samsonov, M. E. [3 ]
Stolin, A. A. [2 ]
Tolstoy, V. N. [4 ]
机构
[1] Inst Theoret & Expt Phys, Moscow 117259, Russia
[2] Gothenburg Univ, Dept Math, Gothenburg, Sweden
[3] Dublin Inst Adv Studies, Dublin 4, Ireland
[4] Moscow MV Lomonosov State Univ, Inst Nucl Phys, Moscow, Russia
关键词
D O I
10.1007/s00220-008-0554-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study classical twists of Lie bialgebra structures on the polynomial current algebra g[u], where g is a simple complex finite-dimensional Lie algebra. We focus on the structures induced by the so-called quasi-trigonometric solutions of the classical Yang-Baxter equation. It turns out that quasi-trigonometric r-matrices fall into classes labelled by the vertices of the extended Dynkin diagram of g. We give the complete classification of quasi-trigonometric r-matrices belonging to multiplicity free simple roots (which have coefficient 1 in the decomposition of the maximal root). We quantize solutions corresponding to the first root of sl(n).
引用
收藏
页码:625 / 662
页数:38
相关论文
共 50 条
  • [1] On Some Lie Bialgebra Structures on Polynomial Algebras and their Quantization
    S. M. Khoroshkin
    I. I. Pop
    M. E. Samsonov
    A. A. Stolin
    V. N. Tolstoy
    Communications in Mathematical Physics, 2008, 282 : 625 - 662
  • [2] Some remarks on Lie bialgebra structures on simple complex Lie algebras
    Stolin, A
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (09) : 4289 - 4302
  • [3] Lie Bialgebra Structures on Lie Algebras of Block Type
    Cheng, Yongsheng
    Song, Guang'ai
    Xin, Bin
    ALGEBRA COLLOQUIUM, 2009, 16 (04) : 677 - 690
  • [4] Lie bialgebra structures on Lie algebras of generalized Weyl type
    Yue, Xiaoqing
    Su, Yucai
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (04) : 1537 - 1549
  • [5] Classification of the Lie bialgebra structures on the Witt and Virasoro algebras
    Ng, SH
    Taft, EJ
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 151 (01) : 67 - 88
  • [6] Poisson algebras and symmetric Leibniz bialgebra structures on oscillator Lie algebras
    Albuquerque, H.
    Barreiro, E.
    Benayadi, S.
    Boucetta, M.
    Sanchez, J. M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 160
  • [7] Lie bialgebra structures on the deformative Schrodinger-Virasoro algebras
    Fa, Huanxia
    Li, Junbo
    Zheng, Yelong
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (11)
  • [8] Quantization of the Lie Bialgebra of String Topology
    Xiaojun Chen
    Farkhod Eshmatov
    Wee Liang Gan
    Communications in Mathematical Physics, 2011, 301 : 37 - 53
  • [9] Quantization of the Lie Bialgebra of String Topology
    Chen, Xiaojun
    Eshmatov, Farkhod
    Gan, Wee Liang
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 301 (01) : 37 - 53
  • [10] Solvable Lie algebras, Lie groups and polynomial structures
    Dekimpe, K
    COMPOSITIO MATHEMATICA, 2000, 121 (02) : 183 - 204