Applying a Neural Network Architecture with Spatio-Temporal Connections to the Maze Exploration

被引:0
|
作者
Filin, Dmitry [1 ]
Panov, Aleksandr I. [1 ,2 ]
机构
[1] Natl Res Univ, Higher Sch Econ, Moscow, Russia
[2] Russian Acad Sci, Fed Res Ctr Comp Sci & Control, Moscow, Russia
关键词
D O I
10.1007/978-3-319-63940-6_8
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
We present a model of Reinforcement Learning, which consists of modified neural-network architecture with spatio-temporal connections, known as Temporal Hebbian Self-Organizing Map (THSOM). A number of experiments were conducted to test the model on the maze solving problem. The algorithm demonstrates sustainable learning, building a near to optimal routes. This work describes an agents behavior in the mazes of different complexity and also influence of models parameters at the length of formed paths.
引用
收藏
页码:57 / 64
页数:8
相关论文
共 50 条
  • [31] STANN: A Spatio-Temporal Attentive Neural Network for Traffic Prediction
    He, Zhixiang
    Chow, Chi-Yin
    Zhang, Jia-Dong
    IEEE ACCESS, 2019, 7 : 4795 - 4806
  • [32] Cerebron: A Reconfigurable Architecture for Spatio-Temporal Sparse Spiking Neural Networks
    Chen, Qinyu
    Gao, Chang
    Fu, Yuxiang
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2022, 30 (10) : 1425 - 1437
  • [33] Applying Spatio-temporal Databases to Interaction Agents
    Cuadra, Dolores
    Javier Calle, Francisco
    Rivero, Jessica
    del Valle, David
    INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE 2008, 2009, 50 : 536 - 540
  • [34] Topic Exploration in Spatio-Temporal Document Collections
    Zhao, Kaiqi
    Chen, Lisi
    Cong, Gao
    SIGMOD'16: PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2016, : 985 - 998
  • [35] HiSTGNN: Hierarchical spatio-temporal graph neural network for weather forecasting
    Ma, Minbo
    Xie, Peng
    Teng, Fei
    Wang, Bin
    Ji, Shenggong
    Zhang, Junbo
    Li, Tianrui
    INFORMATION SCIENCES, 2023, 648
  • [36] The Complex Convolutional Neural Network for Adaptive Spatio-Temporal Broadband Beamforming
    Wu, Xun
    Xue, Cong
    Zhang, Shurui
    Zhu, Hairui
    Han, Yubing
    Sheng, Weixing
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (07) : 10778 - 10782
  • [37] On the Adjacency Matrix of Spatio-Temporal Neural Network Architectures for Predicting Traffic
    Bomher, Sebastian
    Ichim, Bogdan
    International Conference on Vehicle Technology and Intelligent Transport Systems, VEHITS - Proceedings, 2023, 2023-April : 321 - 328
  • [38] An eight layer cellular neural network for spatio-temporal image filtering
    Shi, BE
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2006, 34 (01) : 141 - 164
  • [39] Learning Decentralized Flocking Controllers with Spatio-Temporal Graph Neural Network
    Chen, Siji
    Su, Yanshen
    Li, Peihan
    Zhou, Lifeng
    Lu, Chang-Tien
    2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2024, 2024, : 2596 - 2602
  • [40] A Spatio-Temporal Graph Neural Network Approach for Traffic Flow Prediction
    Li, Yanbing
    Zhao, Wei
    Fan, Huilong
    MATHEMATICS, 2022, 10 (10)