A Spatio-Temporal Graph Neural Network Approach for Traffic Flow Prediction

被引:8
|
作者
Li, Yanbing [1 ]
Zhao, Wei [2 ]
Fan, Huilong [2 ]
机构
[1] Xinjiang Univ, Coll Informat Sci & Engn, Sch Cyber Sci & Engn, Urumqi 830046, Peoples R China
[2] Cent South Univ, Sch Comp Sci & Engn, Changsha 410075, Peoples R China
基金
中国国家自然科学基金;
关键词
traffic flow; deep learning; graph neural network; forecasting; DEEP; MODEL;
D O I
10.3390/math10101754
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The accuracy of short-term traffic flow prediction is one of the important issues in the construction of smart cities, and it is an effective way to solve the problem of traffic congestion. Most previous studies could not effectively mine the potential relationship between the temporal and spatial dimensions of traffic data flow. Due to the large variability in the traffic flow data of road conditions, we analyzed it with "dynamic", using a dynamic-aware graph neural network model for the hidden relationships between space-time in the deep learning segment. In this paper, we propose a dynamic perceptual graph neural network model for the temporal and spatial hidden relationships of deep learning segments. This model mixes temporal features and spatial features with graphs and expresses them. The temporal features and spatial features are connected to each other to learn potential relationships, so as to more accurately predict the traffic speed in the future time period, we performed experiments on real data sets and compared with some baseline models. The experiments show that the method proposed in this paper has certain advantages.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] SPATIO-TEMPORAL GRAPH-TCN NEURAL NETWORK FOR TRAFFIC FLOW PREDICTION
    Ren, Hongjin
    Kang, Jinbiao
    Zhang, Ke
    2022 19TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2022,
  • [2] Spatio-Temporal Graph-TCN Neural Network for Traffic Flow Prediction
    Ren, Hongjin
    Kang, Jinbiao
    Zhang, Ke
    2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing, ICCWAMTIP 2022, 2022,
  • [3] Review of Construction and Applications of Spatio-Temporal Graph Neural Network in Traffic Flow Prediction
    Wang, Weitai
    Wang, Xiaoqiang
    Li, Leixiao
    Tao, Yihao
    Lin, Hao
    Computer Engineering and Applications, 2024, 60 (08) : 31 - 45
  • [4] STGFP: information enhanced spatio-temporal graph neural network for traffic flow prediction
    Li, Qi
    Wang, Fan
    Wang, Chen
    APPLIED INTELLIGENCE, 2025, 55 (06)
  • [5] Research on traffic flow prediction based on adaptive spatio-temporal perceptual graph neural network for traffic prediction
    Liang, Qian
    Yin, Xiang
    Xia, Chengliang
    Chen, Ye
    ACM International Conference Proceeding Series, : 1101 - 1105
  • [6] Spatio-temporal communication network traffic prediction method based on graph neural network
    Qin, Liang
    Gu, Huaxi
    Wei, Wenting
    Xiao, Zhe
    Lin, Zexu
    Liu, Lu
    Wang, Ning
    INFORMATION SCIENCES, 2024, 679
  • [7] Traffic Flow Prediction Based on Spatio-Temporal Aggregated Graph Neural Networks
    Wu, Shuangshuang
    Hu, Yao
    TRANSPORTATION RESEARCH RECORD, 2025,
  • [8] Federated Spatio-Temporal Traffic Flow Prediction Based on Graph Convolutional Network
    Wang, Hanqiu
    Zhang, Rongqing
    Cheng, Xiang
    Yang, Liuqing
    2022 14TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING, WCSP, 2022, : 221 - 225
  • [9] Knowledge Representation-Actuated Based Spatio-Temporal Graph Neural Network Traffic Flow Prediction
    Liu, Yihan
    Ning, Nianwen
    Lu, Ning
    Zhou, Yi
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 4528 - 4533
  • [10] Bi-GRCN: A Spatio-Temporal Traffic Flow Prediction Model Based on Graph Neural Network
    Jiang, Wenhao
    Xiao, Yunpeng
    Liu, Yanbing
    Liu, Qilie
    Li, Zheng
    JOURNAL OF ADVANCED TRANSPORTATION, 2022, 2022