A curvature-compensated CMOS bandgap with negative feedback technique

被引:5
|
作者
Li, Xiaochao [1 ]
Zhou, Liangxi [1 ]
Chen, Yihui [1 ]
Zhang, Ying [1 ]
Cao, Chunhui [1 ]
Guo, Donghui [1 ]
机构
[1] Xiamen Univ, Dept Elect Engn, Xiamen 361005, Peoples R China
来源
MICROELECTRONICS JOURNAL | 2016年 / 52卷
关键词
Bandgap reference; Temperature coefficient; Power supply rejection; Negative feedback; VOLTAGE REFERENCE; SUPPLY VOLTAGE; BICMOS BANDGAP;
D O I
10.1016/j.mejo.2016.03.011
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper propose a novel high-order curvature-corrected CMOS bandgap reference (BGR) utilizing the negative feedback structure. The innovative negative feedback bandgap core not only compensates the exponential nonlinearity of VBE but also improves the power supply rejection ratio (PSRR) and line regulation. The proposed BGR is analyzed and implemented in 0.35-mu m CMOS process. Experimental results of the BGR indicate that a minimum temperature coefficient (TC) of 13 ppm/degrees C @-40 degrees C to 180 degrees C, a PSRR of -64 dB @ 100 Hz, and the 5.2 uV/V line regulation (LNR) from 3V to 3.6V supply voltage at room temperature. The active area of the presented BGR is 133 mu m x 300 mu m. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:104 / 110
页数:7
相关论文
共 50 条
  • [21] Design of a 1.5-V high-order curvature-compensated CMOS bandgap reference
    Leung, CY
    Leung, KN
    Mok, PKT
    2004 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 1, PROCEEDINGS, 2004, : 49 - 52
  • [22] High-PSRR high-order curvature-compensated CMOS bandgap voltage reference
    Chongqing Key Laboratory of Photoelectronic Information Sensing and Transmitting Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
    不详
    不详
    Sichuan, China
    J. Harbin Inst. Technol., 5 (116-124): : 116 - 124
  • [23] High-PSRR High-Order Curvature-Compensated CMOS Bandgap Voltage Reference
    Qianneng Zhou
    Yunsong Li
    Jinzhao Lin
    Hongjuan Li
    Yu Pang
    Wei Luo
    Journal of Harbin Institute of Technology, 2015, 22 (05) : 116 - 124
  • [24] A 3 V 110 μW 3.1 ppm/°C curvature-compensated CMOS bandgap reference
    Xiaokang Guan
    Xin Wang
    Albert Wang
    Bin Zhao
    Analog Integrated Circuits and Signal Processing, 2010, 62 : 113 - 119
  • [25] A novel 0.84 ppm/°C CMOS curvature-compensated bandgap with 1.2 V supply voltage
    Xu, Huachao
    Zhang, Yuanzhi
    Yan, Xiaobing
    Wang, Jin
    Lu, Chao
    Li, Guofeng
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2018, 91 : 66 - 74
  • [26] High-PSRR High-Order Curvature-Compensated CMOS Bandgap Voltage Reference
    Qianneng Zhou
    Yunsong Li
    Jinzhao Lin
    Hongjuan Li
    Yu Pang
    Wei Luo
    Journal of Harbin Institute of Technology(New series), 2015, (05) : 116 - 124
  • [27] A 1.2-V 2.18-ppm/°C curvature-compensated CMOS bandgap reference
    Zhang, Yuxin
    Li, Jinghu
    Wang, Xinsheng
    Luo, Zhicong
    Zhou, Yanfei
    IEICE ELECTRONICS EXPRESS, 2021, 18 (11):
  • [28] A 1.8V 0.918 ppm/°C CMOS bandgap voltage reference with curvature-compensated
    Pan, Gao
    Hua, Qing
    Zhang, Bo
    IEICE ELECTRONICS EXPRESS, 2019, 16 (23)
  • [29] A 3 V 110 μW 3.1 ppm/°C curvature-compensated CMOS bandgap reference
    Guan, Xiaokang
    Wang, Xin
    Wang, Albert
    Zhao, Bin
    ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2010, 62 (02) : 113 - 119
  • [30] A Novel 1.2-V 4.5-ppm/°C Curvature-Compensated CMOS Bandgap Reference
    Ma, Bill
    Yu, Fengqi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2014, 61 (04) : 1026 - 1035