Computation of lucky number of planar graphs is NP-hard

被引:12
|
作者
Ahadi, A. [1 ]
Dehghan, A. [1 ]
Kazemi, M. [1 ]
Mollaahmadi, E. [1 ]
机构
[1] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
关键词
Lucky labeling; Computational complexity; Graph coloring;
D O I
10.1016/j.ipl.2011.11.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A lucky labeling of a graph G is a function l : V(G) --> N, such that for every two adjacent vertices v and u of G, Sigma(w similar to v) l(w) not equal Sigma(w similar to u) l(w) (x similar to y means that x is joined to y). A lucky number of G, denoted by eta(G), is the minimum number k such that G has a lucky labeling l : V(G) --> {1, ..., k}. We prove that for a given planar 3-colorable graph G determining whether eta(G) = 2 is NP-complete. Also for every k >= 2, it is NP-complete to decide whether eta(G) = k for a given graph G. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:109 / 112
页数:4
相关论文
共 50 条
  • [41] Generalized juntas and NP-hard sets
    Erdelyi, Gabor
    Hemaspaandra, Lane A.
    Rothe, Joerg
    Spakowski, Holger
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (38-40) : 3995 - 4000
  • [42] Diagonal matrix scaling is NP-hard
    Khachiyan, L
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 234 : 173 - 179
  • [43] Most Tensor Problems Are NP-Hard
    Hillar, Christopher J.
    Lim, Lek-Heng
    JOURNAL OF THE ACM, 2013, 60 (06)
  • [44] Optimal state amalgamation is NP-hard
    Frongillo, Rafael M.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2019, 39 : 1857 - 1869
  • [45] The "Art of Trellis Decoding" is NP-Hard
    Kashyap, Navin
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, PROCEEDINGS, 2007, 4851 : 198 - +
  • [46] Wasserstein Barycenters Are NP-Hard to Compute
    Altschuler, Jason M.
    Boix-Adsera, Enric
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2022, 4 (01): : 179 - 203
  • [47] Automating Cutting Planes Is NP-Hard
    Goos, Mika
    Koroth, Sajin
    Mertz, Ian
    Pitassi, Toniann
    PROCEEDINGS OF THE 52ND ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '20), 2020, : 68 - 77
  • [48] Alignment and distribution is NOT (always) NP-hard
    Boudet, V
    Rastello, F
    Robert, Y
    1998 INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, PROCEEDINGS, 1998, : 648 - 657
  • [49] Self-concordance is NP-hard
    Lim, Lek-Heng
    JOURNAL OF GLOBAL OPTIMIZATION, 2017, 68 (02) : 357 - 366
  • [50] The string barcoding problem is NP-hard
    Dalpasso, M
    Lancia, G
    Rizzi, R
    COMPARATIVE GENOMICS, 2005, 3678 : 88 - 96