Computation of lucky number of planar graphs is NP-hard

被引:12
|
作者
Ahadi, A. [1 ]
Dehghan, A. [1 ]
Kazemi, M. [1 ]
Mollaahmadi, E. [1 ]
机构
[1] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
关键词
Lucky labeling; Computational complexity; Graph coloring;
D O I
10.1016/j.ipl.2011.11.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A lucky labeling of a graph G is a function l : V(G) --> N, such that for every two adjacent vertices v and u of G, Sigma(w similar to v) l(w) not equal Sigma(w similar to u) l(w) (x similar to y means that x is joined to y). A lucky number of G, denoted by eta(G), is the minimum number k such that G has a lucky labeling l : V(G) --> {1, ..., k}. We prove that for a given planar 3-colorable graph G determining whether eta(G) = 2 is NP-complete. Also for every k >= 2, it is NP-complete to decide whether eta(G) = k for a given graph G. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:109 / 112
页数:4
相关论文
共 50 条
  • [21] COMPUTING GEOMETRIC MINIMUM-DILATION GRAPHS IS NP-HARD
    Giannopoulos, Panos
    Klein, Rolf
    Knauer, Christian
    Kutz, Martin
    Marx, Daniel
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2010, 20 (02) : 147 - 173
  • [22] Trainyard is NP-Hard
    Almanza, Matteo
    Leucci, Stefano
    Panconesi, Alessandro
    THEORETICAL COMPUTER SCIENCE, 2018, 748 : 66 - 76
  • [23] Polynomial algorithms that prove an NP-hard hypothesis implies an NP-hard conclusion
    Bauer, D
    Broersma, HJ
    Morgana, A
    Schmeichel, E
    DISCRETE APPLIED MATHEMATICS, 2002, 120 (1-3) : 13 - 23
  • [24] Terrain Guarding is NP-Hard
    King, James
    Krohn, Erik
    PROCEEDINGS OF THE TWENTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2010, 135 : 1580 - +
  • [25] Automating Resolution is NP-Hard
    Atserias, Albert
    Mueller, Moritz
    2019 IEEE 60TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2019), 2019, : 498 - 509
  • [26] STORAGE ALLOCATION IS NP-HARD
    ROBSON, JM
    INFORMATION PROCESSING LETTERS, 1980, 11 (03) : 119 - 125
  • [27] TERRAIN GUARDING IS NP-HARD
    King, James
    Krohn, Erik
    SIAM JOURNAL ON COMPUTING, 2011, 40 (05) : 1316 - 1339
  • [28] Automating Resolution is NP-Hard
    Atserias, Albert
    Muller, Moritz
    JOURNAL OF THE ACM, 2020, 67 (05)
  • [29] Protein design is NP-hard
    Pierce, NA
    Winfree, E
    PROTEIN ENGINEERING, 2002, 15 (10): : 779 - 782
  • [30] INFLATING BALLS IS NP-HARD
    Batog, Guillaume
    Goaoc, Xavier
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2011, 21 (04) : 403 - 415