Momentum maps and Morita equivalence

被引:0
|
作者
Xu, P [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce quasi-symplectic groupoids and explain their relation with momentum map theories. This approach enables us to unify into a single framework various momentum map theories, including ordinary Hamiltonian G-spaces, Lu's momentum maps of Poisson group actions, and the group-valued momentum maps of Alekseev-Malkin-Meinrenken. More precisely, we carry out the following program: (1) we define and study properties of quasi-symplectic groupoids. (2) We study the momentum map theory defined by a quasi-symplectic groupoid Gamma paired right arrows P. In particular, we study the reduction theory and prove that J(-1)(O)/Gamma is a symplectic manifold for any Hamiltonian F-space (X ->(J) P,omega(X)) (even though omega(X) is an element of Omega(2)(X) may be degenerate), where O subset of P is a groupoid orbit. More generally, we prove that the intertwiner space (X-1 x P <(X-2)overbar >)/Gamma between two Hamiltonian Gamma-spaces X-1 and X-2 is a symplectic manifold (whenever it is a smooth manifold). (3) we study Morita equivalence of quasi-symplectic groupoids. In particular, we prove that Morita equivalent quasi-symplectic groupoids give rise to equivalent momentum map theories. Moreover the intertwiner space (X-1 x P <(X-2)over bar >)/Gamma depends only on the Morita equivalence class. As a result, we recover various well-known results concerning equivalence of momentum maps including the Alekseev-Ginzburg-Weinstein linearization theorem and the Alekseev-Malkin-Meinrenken equivalence theorem between quasi-Hamiltonian spaces and Hamiltonian loop group spaces.
引用
收藏
页码:289 / 333
页数:45
相关论文
共 50 条
  • [41] Morita equivalence of finite semigroups
    Ülo Reimaa
    Valdis Laan
    Lauri Tart
    Semigroup Forum, 2021, 102 : 842 - 860
  • [42] MORITA EQUIVALENCE AND CYCLIC HOMOLOGY
    MCCARTHY, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 307 (06): : 211 - 215
  • [43] Morita equivalence of Cherednik algebras
    Berest, Y
    Etingof, P
    Ginzburg, V
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2004, 568 : 81 - 98
  • [44] MORITA EQUIVALENCE OF NEST ALGEBRAS
    Eleftherakis, G. K.
    MATHEMATICA SCANDINAVICA, 2013, 113 (01) : 83 - 107
  • [45] Modular Curvature and Morita Equivalence
    Lesch, Matthias
    Moscovici, Henri
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2016, 26 (03) : 818 - 873
  • [46] Poisson geometry and Morita equivalence
    Bursztyn, Henrique
    Weinstein, Alan
    POISSON GEOMETRY, DEFORMATION QUANTISATION AND GROUP REPRESENTATIONS, 2005, 323 : 1 - +
  • [47] Morita equivalence for factorisable semigroups
    Chen, YQ
    Shum, KP
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2001, 17 (03): : 437 - 454
  • [48] MORITA EQUIVALENCE FOR RINGS WITH LOCAL UNITS
    ABRAMS, GD
    COMMUNICATIONS IN ALGEBRA, 1983, 11 (08) : 801 - 837
  • [49] Hausdorff Morita equivalence of singular foliations
    Alfonso Garmendia
    Marco Zambon
    Annals of Global Analysis and Geometry, 2019, 55 : 99 - 132
  • [50] CROSSED-PRODUCTS AND MORITA EQUIVALENCE
    COMBES, F
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1984, 49 (SEP) : 289 - 306