Momentum maps and Morita equivalence

被引:0
|
作者
Xu, P [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce quasi-symplectic groupoids and explain their relation with momentum map theories. This approach enables us to unify into a single framework various momentum map theories, including ordinary Hamiltonian G-spaces, Lu's momentum maps of Poisson group actions, and the group-valued momentum maps of Alekseev-Malkin-Meinrenken. More precisely, we carry out the following program: (1) we define and study properties of quasi-symplectic groupoids. (2) We study the momentum map theory defined by a quasi-symplectic groupoid Gamma paired right arrows P. In particular, we study the reduction theory and prove that J(-1)(O)/Gamma is a symplectic manifold for any Hamiltonian F-space (X ->(J) P,omega(X)) (even though omega(X) is an element of Omega(2)(X) may be degenerate), where O subset of P is a groupoid orbit. More generally, we prove that the intertwiner space (X-1 x P <(X-2)overbar >)/Gamma between two Hamiltonian Gamma-spaces X-1 and X-2 is a symplectic manifold (whenever it is a smooth manifold). (3) we study Morita equivalence of quasi-symplectic groupoids. In particular, we prove that Morita equivalent quasi-symplectic groupoids give rise to equivalent momentum map theories. Moreover the intertwiner space (X-1 x P <(X-2)over bar >)/Gamma depends only on the Morita equivalence class. As a result, we recover various well-known results concerning equivalence of momentum maps including the Alekseev-Ginzburg-Weinstein linearization theorem and the Alekseev-Malkin-Meinrenken equivalence theorem between quasi-Hamiltonian spaces and Hamiltonian loop group spaces.
引用
收藏
页码:289 / 333
页数:45
相关论文
共 50 条
  • [31] Modular Curvature and Morita Equivalence
    Matthias Lesch
    Henri Moscovici
    Geometric and Functional Analysis, 2016, 26 : 818 - 873
  • [32] Morita equivalence of inverse semigroups
    Afara, B.
    Lawson, M. V.
    PERIODICA MATHEMATICA HUNGARICA, 2013, 66 (01) : 119 - 130
  • [33] Morita equivalence and Pedersen ideals
    Ara, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (04) : 1041 - 1049
  • [34] Fair semigroups and Morita equivalence
    Laan, Valdis
    Marki, Laszlo
    SEMIGROUP FORUM, 2016, 92 (03) : 633 - 644
  • [35] Morita Equivalence for Factorisable Semigroups
    Yu Qun CHEN Department of Mathematics
    Acta Mathematica Sinica(English Series), 2001, 17 (03) : 437 - 454
  • [36] Morita equivalence for graded rings
    Abrams, Gene
    Ruiz, Efren
    Tomforde, Mark
    JOURNAL OF ALGEBRA, 2023, 617 : 79 - 112
  • [37] Morita equivalence of finite semigroups
    Reimaa, Ulo
    Laan, Valdis
    Tart, Lauri
    SEMIGROUP FORUM, 2021, 102 (03) : 842 - 860
  • [38] CATEGORIES OF ACTIONS AND MORITA EQUIVALENCE
    ELKINS, BL
    ZILBER, JA
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03): : A357 - A357
  • [39] Morita Equivalence for Rings with Involution
    Ara P.
    Algebras and Representation Theory, 1999, 2 (3) : 227 - 247
  • [40] Morita equivalence and quotient rings
    Harris, Morton E.
    JOURNAL OF ALGEBRA, 2018, 502 : 45 - 48