The randomized Kaczmarz method with mismatched adjoint

被引:17
|
作者
Lorenz, Dirk A. [1 ]
Rose, Sean [2 ]
Schoepfer, Frank [3 ]
机构
[1] TU Braunschweig, Inst Anal & Algebra, D-38092 Braunschweig, ME, Germany
[2] Univ Chicago, Dept Radiol, 5841 S Maryland Ave MC2026, Chicago, IL 60637 USA
[3] Carl von Ossietzky Univ Oldenburg, Inst Math, D-26111 Oldenburg, Germany
基金
美国国家科学基金会;
关键词
Randomized algorithms; Kaczmarz method; Linear convergence; 65F10; 68W20; 15A24;
D O I
10.1007/s10543-018-0717-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper investigates the randomized version of the Kaczmarz method to solve linear systems in the case where the adjoint of the system matrix is not exacta situation we refer to as mismatched adjoint. We show that the method may still converge both in the over- and underdetermined consistent case under appropriate conditions, and we calculate the expected asymptotic rate of linear convergence. Moreover, we analyze the inconsistent case and obtain results for the method with mismatched adjoint as for the standard method. Finally, we derive a method to compute optimized probabilities for the choice of the rows and illustrate our findings with numerical examples.
引用
收藏
页码:1079 / 1098
页数:20
相关论文
共 50 条
  • [41] Chambolle-Pock's Primal-Dual Method with Mismatched Adjoint
    Lorenz, Dirk A.
    Schneppe, Felix
    APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 87 (02):
  • [42] Selectable Set Randomized Kaczmarz
    Yaniv, Yotam
    Moorman, Jacob D.
    Swartworth, William
    Tu, Thomas
    Landis, Daji
    Needell, Deanna
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2023, 30 (01)
  • [43] A Sparse Randomized Kaczmarz Algorithm
    Mansour, Hassan
    Yilmaz, Ozgur
    2013 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2013, : 621 - 621
  • [44] THE DUAL RANDOMIZED KACZMARZ ALGORITHM
    He, Songnian
    Wang, Ziting
    Dong, Qiao-li
    Yao, Yonghong
    Tang, Yuchao
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2023, 24 (04) : 779 - 786
  • [45] An accelerated randomized Kaczmarz method via low-rank approximation
    Xiang, Xu
    Cheng, Lizhi
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (07) : 1413 - 1421
  • [46] Projected randomized Kaczmarz methods
    Wu, Nianci
    Xiang, Hua
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 372
  • [47] A geometric probability randomized Kaczmarz method for large scale linear systems
    Yang, Xi
    Applied Numerical Mathematics, 2021, 164 : 139 - 160
  • [48] A subspace constrained randomized Kaczmarz method for structure or external knowledge exploitation
    Lok, Jackie
    Rebrova, Elizaveta
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 698 : 220 - 260
  • [49] Acceleration of randomized Kaczmarz method via the Johnson-Lindenstrauss Lemma
    Eldar, Yonina C.
    Needell, Deanna
    NUMERICAL ALGORITHMS, 2011, 58 (02) : 163 - 177
  • [50] AN ACCELERATED RANDOMIZED KACZMARZ ALGORITHM
    Liu, Ji
    Wright, Stephen J.
    MATHEMATICS OF COMPUTATION, 2015, 85 (297) : 153 - 178