The randomized Kaczmarz method with mismatched adjoint

被引:17
|
作者
Lorenz, Dirk A. [1 ]
Rose, Sean [2 ]
Schoepfer, Frank [3 ]
机构
[1] TU Braunschweig, Inst Anal & Algebra, D-38092 Braunschweig, ME, Germany
[2] Univ Chicago, Dept Radiol, 5841 S Maryland Ave MC2026, Chicago, IL 60637 USA
[3] Carl von Ossietzky Univ Oldenburg, Inst Math, D-26111 Oldenburg, Germany
基金
美国国家科学基金会;
关键词
Randomized algorithms; Kaczmarz method; Linear convergence; 65F10; 68W20; 15A24;
D O I
10.1007/s10543-018-0717-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper investigates the randomized version of the Kaczmarz method to solve linear systems in the case where the adjoint of the system matrix is not exacta situation we refer to as mismatched adjoint. We show that the method may still converge both in the over- and underdetermined consistent case under appropriate conditions, and we calculate the expected asymptotic rate of linear convergence. Moreover, we analyze the inconsistent case and obtain results for the method with mismatched adjoint as for the standard method. Finally, we derive a method to compute optimized probabilities for the choice of the rows and illustrate our findings with numerical examples.
引用
收藏
页码:1079 / 1098
页数:20
相关论文
共 50 条
  • [31] Acceleration of randomized Kaczmarz method via the Johnson–Lindenstrauss Lemma
    Yonina C. Eldar
    Deanna Needell
    Numerical Algorithms, 2011, 58 : 163 - 177
  • [32] On the Randomized Kaczmarz Algorithm
    Dai, Liang
    Soltanalian, Mojtaba
    Pelckmans, Kristiaan
    IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (03) : 330 - 333
  • [33] Greedy Randomized Kaczmarz Method for Solving Noisy Linear Systems
    Wu W.
    Wu, Wenting (wuwenting@bit.edu.cn), 1600, Science Press (49): : 1466 - 1472
  • [34] A weighted randomized sparse Kaczmarz method for solving linear systems
    Zhang, Lu
    Yuan, Ziyang
    Wang, Hongxia
    Zhang, Hui
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (08):
  • [35] Randomized block Kaczmarz method with projection for solving least squares
    Needell, Deanna
    Zhao, Ran
    Zouzias, Anastasios
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 484 : 322 - 343
  • [36] Randomized Kaczmarz method with adaptive stepsizes for inconsistent linear systems
    Zeng, Yun
    Han, Deren
    Su, Yansheng
    Xie, Jiaxin
    NUMERICAL ALGORITHMS, 2023, 94 (03) : 1403 - 1420
  • [37] Paved with good intentions: Analysis of a randomized block Kaczmarz method
    Needell, Deanna
    Tropp, Joel A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 441 : 199 - 221
  • [38] On greedy randomized block Kaczmarz method for consistent linear systems
    Liu, Yong
    Gu, Chuan-Qing
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 616 : 178 - 200
  • [39] A weighted randomized sparse Kaczmarz method for solving linear systems
    Lu Zhang
    Ziyang Yuan
    Hongxia Wang
    Hui Zhang
    Computational and Applied Mathematics, 2022, 41
  • [40] Randomized Kaczmarz method with adaptive stepsizes for inconsistent linear systems
    Yun Zeng
    Deren Han
    Yansheng Su
    Jiaxin Xie
    Numerical Algorithms, 2023, 94 : 1403 - 1420