The randomized Kaczmarz method with mismatched adjoint

被引:17
|
作者
Lorenz, Dirk A. [1 ]
Rose, Sean [2 ]
Schoepfer, Frank [3 ]
机构
[1] TU Braunschweig, Inst Anal & Algebra, D-38092 Braunschweig, ME, Germany
[2] Univ Chicago, Dept Radiol, 5841 S Maryland Ave MC2026, Chicago, IL 60637 USA
[3] Carl von Ossietzky Univ Oldenburg, Inst Math, D-26111 Oldenburg, Germany
基金
美国国家科学基金会;
关键词
Randomized algorithms; Kaczmarz method; Linear convergence; 65F10; 68W20; 15A24;
D O I
10.1007/s10543-018-0717-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper investigates the randomized version of the Kaczmarz method to solve linear systems in the case where the adjoint of the system matrix is not exacta situation we refer to as mismatched adjoint. We show that the method may still converge both in the over- and underdetermined consistent case under appropriate conditions, and we calculate the expected asymptotic rate of linear convergence. Moreover, we analyze the inconsistent case and obtain results for the method with mismatched adjoint as for the standard method. Finally, we derive a method to compute optimized probabilities for the choice of the rows and illustrate our findings with numerical examples.
引用
收藏
页码:1079 / 1098
页数:20
相关论文
共 50 条
  • [1] The randomized Kaczmarz method with mismatched adjoint
    Dirk A. Lorenz
    Sean Rose
    Frank Schöpfer
    BIT Numerical Mathematics, 2018, 58 : 1079 - 1098
  • [2] Comments on the Randomized Kaczmarz Method
    Strohmer, Thomas
    Vershynin, Roman
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2009, 15 (04) : 437 - 440
  • [3] Comments on the Randomized Kaczmarz Method
    Thomas Strohmer
    Roman Vershynin
    Journal of Fourier Analysis and Applications, 2009, 15 : 437 - 440
  • [4] On convergence rate of the randomized Kaczmarz method
    Bai, Zhong-Zhi
    Wu, Wen-Ting
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 553 : 252 - 269
  • [5] Preasymptotic convergence of randomized Kaczmarz method
    Jiao, Yuling
    Jin, Bangti
    Lu, Xiliang
    INVERSE PROBLEMS, 2017, 33 (12)
  • [6] Linear convergence of the randomized sparse Kaczmarz method
    Schoepfer, Frank
    Lorenz, Dirk A.
    MATHEMATICAL PROGRAMMING, 2019, 173 (1-2) : 509 - 536
  • [7] LINEAR DISCRIMINANT ANALYSIS WITH THE RANDOMIZED KACZMARZ METHOD
    Chi, Jocelyn T.
    Needell, Deanna
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2025, 46 (01) : 94 - 120
  • [8] Nonlinear greedy relaxed randomized Kaczmarz method
    Liu, Li
    Li, Weiguo
    Xing, Lili
    Bao, Wendi
    Results in Applied Mathematics, 2022, 16
  • [9] Choosing relaxation parameter in randomized Kaczmarz method
    Nikazad, T.
    Khakzad, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 444
  • [10] Linear convergence of the randomized sparse Kaczmarz method
    Frank Schöpfer
    Dirk A. Lorenz
    Mathematical Programming, 2019, 173 : 509 - 536