Continua of local minimizers in a non-smooth model of phase transitions

被引:6
|
作者
Drabek, Pavel [1 ,2 ]
Robinson, Stephen B. [3 ]
机构
[1] Univ W Bohemia, Dept Math, Plzen 30614, Czech Republic
[2] Univ W Bohemia, Ctr NTIS, Plzen 30614, Czech Republic
[3] Wake Forest Univ, Dept Math, Winston Salem, NC 27109 USA
来源
关键词
CAHN-HILLIARD EQUATION; HIGHER SPACE DIMENSIONS; SLOW DYNAMICS; MOTION;
D O I
10.1007/s00033-011-0124-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study critical points of the functional J(epsilon)(u):=epsilon(2)/2 integral(1)(0)vertical bar u(x)vertical bar(2)dx + integral F-1(0)(u)dx,u is an element of W-1,W-2(0,1), (1) where F : R -> R is assumed to be a double-well potential. This functional represents the total free energy in models of phase transition and allows for the study of interesting phenomena such as slow dynamics. In particular, we consider a non-classical choice for F modeled on F(u) = |1-u(2)|alpha where 1 < alpha < 2. The discontinuity in F '' at +/- 1 leads to the existence of multiple continua of critical points that are not present in the classical case F is an element of C-2. We prove that the interior points of these continua are local minima. The energy of these local minimizers is strictly greater than the global minimum of J(epsilon). In particular, the existence of these continua leads to an alternative explanation for the slow dynamics observed in phase transition models.
引用
收藏
页码:609 / 622
页数:14
相关论文
共 50 条
  • [1] Continua of local minimizers in a non-smooth model of phase transitions
    Pavel Drábek
    Stephen B. Robinson
    Zeitschrift für angewandte Mathematik und Physik, 2011, 62 : 609 - 622
  • [2] CONTINUA OF LOCAL MINIMIZERS IN A QUASILINEAR MODEL OF PHASE TRANSITIONS
    Drabek, Pavel
    Robinson, Stephen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (01) : 163 - 172
  • [3] Computing non-smooth minimizers with the mesh transformation method
    Zhou, JS
    Li, ZP
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2005, 25 (03) : 458 - 472
  • [4] Local variability of non-smooth functions
    Navascues, M. A.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (07) : 2506 - 2518
  • [5] Uniform bounds of minimizers of non-smooth constrained functionals on maps spaces
    Ceccon, Jurandir
    Montenegro, Marcos
    ADVANCES IN CALCULUS OF VARIATIONS, 2016, 9 (02) : 127 - 141
  • [6] Non-smooth transitions in a simple city traffic model analyzed through supertracks
    Toledo, B. A.
    Sanjuan, M. A. F.
    Munoz, V.
    Rogan, J.
    Valdivia, J. A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (01) : 81 - 88
  • [7] Computation of non-smooth local centre manifolds
    Jolly, MS
    Rosa, R
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2005, 25 (04) : 698 - 725
  • [8] Local anisotropy analysis for non-smooth images
    Bergonnier, Sandra
    Hild, Francois
    Roux, Stephane
    PATTERN RECOGNITION, 2007, 40 (02) : 544 - 556
  • [9] Noise-induced transitions in a non-smooth SUS epidemic model with media alert
    Yang, Anji
    Song, Baojun
    Yuan, Sanling
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 18 (01) : 745 - 763
  • [10] Variational methods in local and global non-smooth analysis
    Ioffe, A
    NONLINEAR ANALYSIS, DIFFERENTIAL EQUATIONS AND CONTROL, 1999, 528 : 447 - 502