Non-smooth transitions in a simple city traffic model analyzed through supertracks

被引:12
|
作者
Toledo, B. A. [1 ,2 ]
Sanjuan, M. A. F. [3 ]
Munoz, V. [1 ]
Rogan, J. [1 ]
Valdivia, J. A. [1 ]
机构
[1] Univ Chile, Fac Ciencias, Dept Fis, Santiago, Chile
[2] Inst Aeronaut Technol CTA ITA IEFM, BR-12228900 Sao Jose Dos Campos, SP, Brazil
[3] Univ Rey Juan Carlos, Dept Fis, Madrid 28933, Spain
基金
巴西圣保罗研究基金会;
关键词
Traffic dynamics; Supertracks; Chaos; FLOW; SEQUENCE; CHAOS;
D O I
10.1016/j.cnsns.2012.06.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We explore the nontrivial behavior of a particular city traffic model due to its minimalistic representation of basic city traffic dynamics. The chaotic behavior is studied through the supertrack functions, an approach that in some cases exposes more information than usual methods. In particular, we explore a parameter region that may be related to the high sensitivity of traffic flow and eventually could lead to traffic jams. First, we describe analytically a period adding region, that has a universal critical exponent of alpha = 1. Second, we analyze a chaotic crisis giving rise to an inverse supertrack cascade with a period scaling of alpha approximate to 0.49. This cascade seems to be universal when approaching to the chaotic behavior, but in general it depends on the braking and accelerating capabilities of the vehicles. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:81 / 88
页数:8
相关论文
共 50 条
  • [1] Continua of local minimizers in a non-smooth model of phase transitions
    Pavel Drábek
    Stephen B. Robinson
    Zeitschrift für angewandte Mathematik und Physik, 2011, 62 : 609 - 622
  • [2] Continua of local minimizers in a non-smooth model of phase transitions
    Drabek, Pavel
    Robinson, Stephen B.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2011, 62 (04): : 609 - 622
  • [3] Noise-induced transitions in a non-smooth SUS epidemic model with media alert
    Yang, Anji
    Song, Baojun
    Yuan, Sanling
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 18 (01) : 745 - 763
  • [4] PREDICTION OF NOISE FROM NON-SMOOTH FLOWING URBAN TRAFFIC
    POWELL, W
    NOISE CONTROL ENGINEERING JOURNAL, 1984, 23 (03) : 118 - 118
  • [5] Topological construction of a non-smooth model of cumulativity
    Lab. d'Informatique de Marseille, CNRS ESA 6077, Technop. de Château-Gombert, F-13453 Marseille Cedex 13, France
    J Logic Comput, 4 (457-462):
  • [6] NON-SMOOTH AND INTERMITTENT MODEL OF CUTTING PROCESS
    Mitura, Andrzej
    Rusinek, Rafal
    11TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS; 5TH EUROPEAN CONFERENCE ON COMPUTATIONAL MECHANICS; 6TH EUROPEAN CONFERENCE ON COMPUTATIONAL FLUID DYNAMICS, VOLS II - IV, 2014, : 1646 - 1656
  • [7] A topological construction of a non-smooth model of comulativity
    Schlechta, K
    JOURNAL OF LOGIC AND COMPUTATION, 1999, 9 (04) : 457 - 462
  • [8] Conservative chaos in a simple oscillatory system with non-smooth nonlinearity
    Peter A. Meleshenko
    Mikhail E. Semenov
    Alexander F. Klinskikh
    Nonlinear Dynamics, 2020, 101 : 2523 - 2540
  • [9] Conservative chaos in a simple oscillatory system with non-smooth nonlinearity
    Meleshenko, Peter A.
    Semenov, Mikhail E.
    Klinskikh, Alexander F.
    NONLINEAR DYNAMICS, 2020, 101 (04) : 2523 - 2540
  • [10] A Non-Smooth Dynamic Model for Pounding Analysis of Simple Span Bridges Under Seismic Excitations
    Liu, Zhao
    Li, Wenshan
    Wu, Suiwen
    SSRN,