Carlson type inequalities for finite sum and integrals on bounded intervals

被引:0
|
作者
Larsson, L
Páles, Z
Persson, LE
机构
[1] Uppsala Univ, Dept Math, SE-79106 Uppsala, Sweden
[2] Univ Debrecen, Inst Math & Informat, H-4010 Debrecen, Hungary
[3] Univ Lulea, Dept Math, SE-97187 Lulea, Sweden
关键词
D O I
10.1017/S0004972700038247
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate Carlson type inequalities for finite sums, that is, inequalities of the form (m)Sigma(k=1) ak<C((m)Sigma(k=1) k(alpha1) alpha(k)(r+1))(mu) ((m)Sigma (k=1) k (alpha2) alpha (r+1) (k)) (lambda) to hold for some constant C independent of the finite, non-zero set a(1),...,a(m) of non-negative numbers. We find constants C which are strictly smaller than the sharp constants in the corresponding infinite series case. Moreover, corresponding results for integrals over bounded intervals are given and a case with any finite number of factors on the right-hand side is proved.
引用
收藏
页码:275 / 284
页数:10
相关论文
共 50 条
  • [31] Classical inequalities for (p, q)-calculus on finite intervals
    Pankaj Jain
    Rohit Manglik
    Boletín de la Sociedad Matemática Mexicana, 2021, 27
  • [32] BOUNDS AND INEQUALITIES FOR GENERAL ORTHOGONAL POLYNOMIALS ON FINITE INTERVALS
    SHI, YG
    JOURNAL OF APPROXIMATION THEORY, 1993, 73 (03) : 303 - 333
  • [33] Classical inequalities for (p, q)-calculus on finite intervals
    Jain, Pankaj
    Manglik, Rohit
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2021, 27 (02):
  • [35] A generalization of the Chebyshev type inequalities for Sugeno integrals
    Hamzeh Agahi
    Adel Mohammadpour
    S. Mansour Vaezpour
    Soft Computing, 2012, 16 : 659 - 666
  • [36] Gruss type inequalities for generalized fractional integrals
    Erden, Samet
    Sarikaya, Mehmet Zeki
    Budak, Huseyin
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016, 2016, 1726
  • [37] Nonlinear integrals and Hadamard-type inequalities
    Abbaszadeh, Sadegh
    Ebadian, Ali
    SOFT COMPUTING, 2018, 22 (09) : 2843 - 2849
  • [38] A generalization of the Chebyshev type inequalities for Sugeno integrals
    Agahi, Hamzeh
    Mohammadpour, Adel
    Vaezpour, S. Mansour
    SOFT COMPUTING, 2012, 16 (04) : 659 - 666
  • [39] General Chebyshev type inequalities for Sugeno integrals
    Mesiar, Radko
    Ouyang, Yao
    FUZZY SETS AND SYSTEMS, 2009, 160 (01) : 58 - 64
  • [40] General Minkowski type inequalities for Sugeno integrals
    Agahi, Hamzeh
    Mesiar, Radko
    Yao Ouyang
    FUZZY SETS AND SYSTEMS, 2010, 161 (05) : 708 - 715