Carlson type inequalities for finite sum and integrals on bounded intervals

被引:0
|
作者
Larsson, L
Páles, Z
Persson, LE
机构
[1] Uppsala Univ, Dept Math, SE-79106 Uppsala, Sweden
[2] Univ Debrecen, Inst Math & Informat, H-4010 Debrecen, Hungary
[3] Univ Lulea, Dept Math, SE-97187 Lulea, Sweden
关键词
D O I
10.1017/S0004972700038247
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate Carlson type inequalities for finite sums, that is, inequalities of the form (m)Sigma(k=1) ak<C((m)Sigma(k=1) k(alpha1) alpha(k)(r+1))(mu) ((m)Sigma (k=1) k (alpha2) alpha (r+1) (k)) (lambda) to hold for some constant C independent of the finite, non-zero set a(1),...,a(m) of non-negative numbers. We find constants C which are strictly smaller than the sharp constants in the corresponding infinite series case. Moreover, corresponding results for integrals over bounded intervals are given and a case with any finite number of factors on the right-hand side is proved.
引用
收藏
页码:275 / 284
页数:10
相关论文
共 50 条
  • [21] Optimal recovery of operators and multidimensional Carlson type inequalities
    Osipenko, K. Yu.
    JOURNAL OF COMPLEXITY, 2016, 32 (01) : 53 - 73
  • [22] General Fritz Carlson's Type Inequality for Sugeno Integrals
    Wang, Xiaojing
    Bai, Chuanzhi
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [23] General Fritz Carlson's Type Inequality for Sugeno Integrals
    Xiaojing Wang
    Chuanzhi Bai
    Journal of Inequalities and Applications, 2011
  • [24] Steffensen type inequalities for fuzzy integrals
    Kaluszka, Marek
    Boczek, Michal
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 261 : 176 - 182
  • [25] Heinz Type Inequalities for Poisson Integrals
    Dariusz Partyka
    Ken-ichi Sakan
    Computational Methods and Function Theory, 2014, 14 : 219 - 236
  • [26] Heinz Type Inequalities for Poisson Integrals
    Partyka, Dariusz
    Sakan, Ken-ichi
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2014, 14 (2-3) : 219 - 236
  • [27] Markov type inequalities for fuzzy integrals
    Flores-Franulic, A.
    Roman-Flores, H.
    Chalco-Cano, Y.
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 207 (01) : 242 - 247
  • [28] On Gruss type inequalities for double integrals
    Pachpatte, BG
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 267 (02) : 454 - 459
  • [29] On Choquet Integrals and Sobolev Type Inequalities
    Petteri Harjulehto
    Ritva Hurri-Syrjänen
    La Matematica, 2024, 3 (4): : 1379 - 1399
  • [30] BOUNDS AND INEQUALITIES FOR ARBITRARY ORTHOGONAL POLYNOMIALS ON FINITE INTERVALS
    SHI, YG
    JOURNAL OF APPROXIMATION THEORY, 1995, 81 (02) : 217 - 230