Carlson type inequalities for finite sum and integrals on bounded intervals

被引:0
|
作者
Larsson, L
Páles, Z
Persson, LE
机构
[1] Uppsala Univ, Dept Math, SE-79106 Uppsala, Sweden
[2] Univ Debrecen, Inst Math & Informat, H-4010 Debrecen, Hungary
[3] Univ Lulea, Dept Math, SE-97187 Lulea, Sweden
关键词
D O I
10.1017/S0004972700038247
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate Carlson type inequalities for finite sums, that is, inequalities of the form (m)Sigma(k=1) ak<C((m)Sigma(k=1) k(alpha1) alpha(k)(r+1))(mu) ((m)Sigma (k=1) k (alpha2) alpha (r+1) (k)) (lambda) to hold for some constant C independent of the finite, non-zero set a(1),...,a(m) of non-negative numbers. We find constants C which are strictly smaller than the sharp constants in the corresponding infinite series case. Moreover, corresponding results for integrals over bounded intervals are given and a case with any finite number of factors on the right-hand side is proved.
引用
收藏
页码:275 / 284
页数:10
相关论文
共 50 条