4D Deformable Models Using Corresponding Control Points and Spatio-Temporal Radial Functions

被引:0
|
作者
Yi, Jianbing [1 ]
Yang, Xuan [1 ]
Wang, Bo [1 ]
Chen, Guoliang [1 ]
机构
[1] Shenzhen Univ, High Performance Comp Ctr Shenzhen, Shenzhen 518060, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Image Transformation; 4D Image; Spatial Smoothness; Temporal Smoothness; IMAGE REGISTRATION; MOTION ESTIMATION; LUNG; FRAMEWORK; EXHALE; INHALE;
D O I
10.1166/jmihi.2016.1741
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
4D imaging techniques make it possible to investigate the dynamic process of 3D objects. This paper aims to provide a 4D deformable model for 4D registration using corresponding control points and spatio-temporal radial basis functions (RBFs), which takes advantage of the temporal information contained in control point sequences, and exploits the temporal coherence of the control point sequences. It preserves the displacements of control points at each time point exactly, and calculates the displacement fields of other voxels at any time point by spatio-temporal interpolation. The solvability, spatial smoothness, temporal smoothness, and separability of our deformation model are then discussed in theory. Evaluation of the 4D deformable model is performed on given motion models and shows that the target registration error and spatial smoothness of our deformation model are dependent on the spatial RBFs and temporal RBFs used in the spatio-temporal RBFs. Different RBFs can be combined to construct the spatio-temporal RBFs with better performance in respect of registration accuracy and temporal smoothness. Most importantly, the temporal smoothness of our spatio-temporal transformation is superior to other transformation
引用
收藏
页码:657 / 666
页数:10
相关论文
共 50 条
  • [41] Differential Equations as a Projection of Implicit Functions Using Spatio-Temporal Taylor Expansion and Critical Points Properties
    Skala, Vaclav
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094
  • [42] A 4D strong spatio-temporal feature learning network for behavior recognition of point cloud sequences
    You, Kaijun
    Hou, Zhenjie
    Liang, Jiuzhen
    Lin, En
    Shi, Haiyong
    Zhong, Zhuokun
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (23) : 63193 - 63211
  • [43] Spatio-Temporal Convolutional LSTMs for Tumor Growth Prediction by Learning 4D Longitudinal Patient Data
    Zhang, Ling
    Lu, Le
    Wang, Xiaosong
    Zhu, Robert M.
    Bagheri, Mohammadhadi
    Summers, Ronald M.
    Yao, Jianhua
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (04) : 1114 - 1126
  • [44] Robust segmentation of 4D cardiac MRI-tagged images via spatio-temporal propagation
    Qian, Z
    Huang, XL
    Metaxas, D
    Axel, L
    MEDICAL IMAGING 2005: PHYSIOLOGY, FUNCTION, AND STRUCTURE FROM MEDICAL IMAGES, PTS 1 AND 2, 2005, 5746 : 580 - 591
  • [45] SPATIO-TEMPORAL MODELS TO PREDICT AND CONTROL EPILEPTIC SEIZURE DYNAMICS
    Baier, G.
    Goodfellow, M.
    Taylor, P. N.
    Wang, Y.
    Garry, D. J.
    EPILEPSIA, 2012, 53 : 20 - 20
  • [46] Deep learning with 4D spatio-temporal data representations for OCT-based force estimation
    Gessert, Nils
    Bengs, Marcel
    Schlueter, Matthias
    Schlaefer, Alexander
    MEDICAL IMAGE ANALYSIS, 2020, 64
  • [47] Spatio-temporal modeling and live-cell imaging of proteolysis in the 4D microenvironment of breast cancer
    Ji, Kyungmin
    Sameni, Mansoureh
    Osuala, Kingsley
    Moin, Kamiar
    Mattingly, Raymond R.
    Sloane, Bonnie F.
    CANCER AND METASTASIS REVIEWS, 2019, 38 (03) : 445 - 454
  • [48] 4D BEYOND CONSTRUCTION: SPATIO-TEMPORAL AND LIFE-CYCLIC MODELING AND VISUALIZATION OF INFRASTRUCTURE DATA
    Zhang, Zixiao
    Hamledari, Hesam
    Billington, Sarah
    Fischer, Martin
    JOURNAL OF INFORMATION TECHNOLOGY IN CONSTRUCTION, 2018, 23 : 285 - 304
  • [49] Studying and approximating spatio-temporal models for epidemic spread and control
    Filipe, JAN
    Gibson, GJ
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1998, 353 (1378) : 2153 - 2162
  • [50] An adaptive statistical method for denoising 4D fluorescence image sequences with preservation of spatio-temporal discontinuities
    Boulanger, J
    Kervrann, C
    Bouthemy, R
    2005 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), VOLS 1-5, 2005, : 1797 - 1800