4D Deformable Models Using Corresponding Control Points and Spatio-Temporal Radial Functions

被引:0
|
作者
Yi, Jianbing [1 ]
Yang, Xuan [1 ]
Wang, Bo [1 ]
Chen, Guoliang [1 ]
机构
[1] Shenzhen Univ, High Performance Comp Ctr Shenzhen, Shenzhen 518060, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Image Transformation; 4D Image; Spatial Smoothness; Temporal Smoothness; IMAGE REGISTRATION; MOTION ESTIMATION; LUNG; FRAMEWORK; EXHALE; INHALE;
D O I
10.1166/jmihi.2016.1741
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
4D imaging techniques make it possible to investigate the dynamic process of 3D objects. This paper aims to provide a 4D deformable model for 4D registration using corresponding control points and spatio-temporal radial basis functions (RBFs), which takes advantage of the temporal information contained in control point sequences, and exploits the temporal coherence of the control point sequences. It preserves the displacements of control points at each time point exactly, and calculates the displacement fields of other voxels at any time point by spatio-temporal interpolation. The solvability, spatial smoothness, temporal smoothness, and separability of our deformation model are then discussed in theory. Evaluation of the 4D deformable model is performed on given motion models and shows that the target registration error and spatial smoothness of our deformation model are dependent on the spatial RBFs and temporal RBFs used in the spatio-temporal RBFs. Different RBFs can be combined to construct the spatio-temporal RBFs with better performance in respect of registration accuracy and temporal smoothness. Most importantly, the temporal smoothness of our spatio-temporal transformation is superior to other transformation
引用
收藏
页码:657 / 666
页数:10
相关论文
共 50 条
  • [21] 4D brain image segmentation model based on spatio-temporal information continuity
    Zhan, Tian-Ming
    Xiao, Liang
    Zhang, Jun
    Wei, Zhi-Hui
    Zhan, T.-M. (zhantianming1984@yahoo.cn), 2013, Chinese Institute of Electronics (41): : 1592 - 1597
  • [22] Mixed Reality by Understanding and Integrating Spatio-Temporal Data of a LIDAR and a 4D Studio
    Benedek, Csaba
    Janko, Zsolt
    Chetverikov, Dmitry
    Sziranyi, Tamas
    ERCIM NEWS, 2013, (95): : 27 - 28
  • [23] Spatio-temporal pharmacokinetic model based registration of 4D PET neuroimaging data
    Jiao, Jieqing
    Searle, Graham E.
    Tziortzi, Andri C.
    Salinas, Cristian A.
    Gunn, Roger N.
    Schnabel, Julia A.
    NEUROIMAGE, 2014, 84 : 225 - 235
  • [24] ANALYSIS OF SPATIO-TEMPORAL PREDICTION METHODS IN 4D VOLUMETRIC MEDICAL IMAGE DATASETS
    Martin, Uwe-Erik
    Kaup, Andre
    2008 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-4, 2008, : 525 - +
  • [25] Study on 4D taxiing path planning of aircraft based on spatio-temporal network
    Zhao, Ningning
    Cui, Shihao
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (03) : 4592 - 4608
  • [26] 4D+SNN: A Spatio-temporal Density-based Clustering Approach with 4D Similarity
    Oliveira, Ricardo
    Santos, Maribel Yasmina
    Moura-Pires, Joao
    2013 IEEE 13TH INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2013, : 1045 - 1052
  • [27] 4D-CS: Exploiting Cluster Prior for 4D Spatio-Temporal LiDAR Semantic Segmentation
    Zhong, Jiexi
    Li, Zhiheng
    Cui, Yubo
    Fang, Zheng
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (01): : 468 - 475
  • [28] A dimension-independent method for updating topological models of 4D spatio-temporal data based on generalized maps
    Ding, Yuan
    Zhang, Xinwen
    Cao, Kai
    Wu, Mingguang
    Yang, Yingbao
    Jing, Fuming
    Chen, Dongming
    Huang, Xinyu
    EARTH SCIENCE INFORMATICS, 2025, 18 (02)
  • [29] Fusion of 4D echocardiography and cine cardiac magnetic resonance volumes using a salient spatio-temporal analysis
    Atehortua, Angelica
    Garreau, Mireille
    Romero, Eduardo
    13TH INTERNATIONAL CONFERENCE ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, 2017, 10572
  • [30] Automatic segmentation of 4D cardiac MR images for extraction of ventricular chambers using a spatio-temporal approach
    Atehortua, Angelica
    Zuluaga, Maria A.
    Ourselin, Sebastien
    Giraldo, Diana
    Romero, Eduardo
    MEDICAL IMAGING 2016: IMAGE PROCESSING, 2016, 9784