4D Deformable Models Using Corresponding Control Points and Spatio-Temporal Radial Functions

被引:0
|
作者
Yi, Jianbing [1 ]
Yang, Xuan [1 ]
Wang, Bo [1 ]
Chen, Guoliang [1 ]
机构
[1] Shenzhen Univ, High Performance Comp Ctr Shenzhen, Shenzhen 518060, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Image Transformation; 4D Image; Spatial Smoothness; Temporal Smoothness; IMAGE REGISTRATION; MOTION ESTIMATION; LUNG; FRAMEWORK; EXHALE; INHALE;
D O I
10.1166/jmihi.2016.1741
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
4D imaging techniques make it possible to investigate the dynamic process of 3D objects. This paper aims to provide a 4D deformable model for 4D registration using corresponding control points and spatio-temporal radial basis functions (RBFs), which takes advantage of the temporal information contained in control point sequences, and exploits the temporal coherence of the control point sequences. It preserves the displacements of control points at each time point exactly, and calculates the displacement fields of other voxels at any time point by spatio-temporal interpolation. The solvability, spatial smoothness, temporal smoothness, and separability of our deformation model are then discussed in theory. Evaluation of the 4D deformable model is performed on given motion models and shows that the target registration error and spatial smoothness of our deformation model are dependent on the spatial RBFs and temporal RBFs used in the spatio-temporal RBFs. Different RBFs can be combined to construct the spatio-temporal RBFs with better performance in respect of registration accuracy and temporal smoothness. Most importantly, the temporal smoothness of our spatio-temporal transformation is superior to other transformation
引用
收藏
页码:657 / 666
页数:10
相关论文
共 50 条
  • [1] Spatio-Temporal Analysis in 4D Video-Microscopy
    Kervrann, Charles
    Boulanger, Jerome
    Bouthemy, Patrick
    ERCIM NEWS, 2005, (60): : 57 - 58
  • [2] Spatio-temporal alignment of 4D cardiac MR images
    Perperidis, D
    Rao, A
    Lorenzo-Valdés, M
    Mohiaddin, R
    Rueckert, D
    FUNCTIONAL IMAGING AND MODELING OF THE HEART, PROCEEDINGS, 2003, 2674 : 205 - 214
  • [3] 4D deformable models with temporal constraints: application to 4D cardiac image segmentation
    Montagnat, J
    Delingette, H
    MEDICAL IMAGE ANALYSIS, 2005, 9 (01) : 87 - 100
  • [4] 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks
    Choy, Christopher
    Gwak, JunYoung
    Savarese, Silvio
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3070 - 3079
  • [5] Adaptive spatio-temporal restoration for 4D fluorescence microscopic imaging
    Boulanger, J
    Kervrann, C
    Bouthemy, P
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2005, PT 1, 2005, 3749 : 893 - 901
  • [6] 4D Attention: Comprehensive Framework for Spatio-Temporal Gaze Mapping
    Oishi, Shuji
    Koide, Kenji
    Yokozuka, Masashi
    Banno, Atsuhiko
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (04): : 7240 - 7247
  • [7] Robust Spatio-Temporal Registration of 4D Cardiac Ultrasound Sequences
    Bersveldsen, Jorn
    Toews, Matthew
    Danudibroto, Adriyana
    Wells, William M., III
    Urheim, Stig
    Estepar, Raul San Jose
    Samset, Eigil
    MEDICAL IMAGING 2016: ULTRASONIC IMAGING AND TOMOGRAPHY, 2016, 9790
  • [8] Adaptive Spatio-temporal Filtering of 4D CT-Heart
    Andersson, Mats
    Knutsson, Hans
    IMAGE ANALYSIS, SCIA 2013: 18TH SCANDINAVIAN CONFERENCE, 2013, 7944 : 246 - 255
  • [9] Deformable spatio-temporal shape models: extending active shape models to 2D+time
    Hamarneh, G
    Gustavsson, T
    IMAGE AND VISION COMPUTING, 2004, 22 (06) : 461 - 470
  • [10] Spatial and spatio-temporal feature extraction from 4D echocardiography images
    Awan, Ruqayya
    Rajpoot, Kashif
    COMPUTERS IN BIOLOGY AND MEDICINE, 2015, 64 : 138 - 147