Global stability of solutions to nonlinear wave equations

被引:13
|
作者
Yang, Shiwu [1 ]
机构
[1] Univ Cambridge, Ctr Math Sci, DPMMS, Cambridge CB3 0WA, England
来源
SELECTA MATHEMATICA-NEW SERIES | 2015年 / 21卷 / 03期
关键词
Null condition; Semilinear wave equation; Global stability; 2 SPACE DIMENSIONS; GENERAL-RELATIVITY; EXTERIOR DOMAINS; MULTIPLE SPEEDS; MINKOWSKI SPACE; EXISTENCE; SYSTEMS; DECAY; TIME; 3D;
D O I
10.1007/s00029-014-0165-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of global stability of solutions to a class of semilinear wave equations with null condition in Minkowski space. We give sufficient conditions on the given solution, which guarantees stability. Our stability result can be reduced to a small data global existence result for a class of semilinear wave equations with linear terms , and quadratic terms where the functions , , decay rather weakly and the constants satisfy the null condition. We show the small data global existence result by using the new approach developed by Dafermos-Rodnianski. In particular, we prove the global stability result under weaker assumptions than those imposed by Alinhac (Indiana Univ Math J 58(6):2543-2574, 2009).
引用
收藏
页码:833 / 881
页数:49
相关论文
共 50 条