Global stability of solutions to nonlinear wave equations

被引:13
|
作者
Yang, Shiwu [1 ]
机构
[1] Univ Cambridge, Ctr Math Sci, DPMMS, Cambridge CB3 0WA, England
来源
SELECTA MATHEMATICA-NEW SERIES | 2015年 / 21卷 / 03期
关键词
Null condition; Semilinear wave equation; Global stability; 2 SPACE DIMENSIONS; GENERAL-RELATIVITY; EXTERIOR DOMAINS; MULTIPLE SPEEDS; MINKOWSKI SPACE; EXISTENCE; SYSTEMS; DECAY; TIME; 3D;
D O I
10.1007/s00029-014-0165-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of global stability of solutions to a class of semilinear wave equations with null condition in Minkowski space. We give sufficient conditions on the given solution, which guarantees stability. Our stability result can be reduced to a small data global existence result for a class of semilinear wave equations with linear terms , and quadratic terms where the functions , , decay rather weakly and the constants satisfy the null condition. We show the small data global existence result by using the new approach developed by Dafermos-Rodnianski. In particular, we prove the global stability result under weaker assumptions than those imposed by Alinhac (Indiana Univ Math J 58(6):2543-2574, 2009).
引用
收藏
页码:833 / 881
页数:49
相关论文
共 50 条
  • [21] A characterization of global and nonglobal solutions of nonlinear wave and Kirchhoff equations
    Esquivel-Avila, JA
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (04) : 1111 - 1127
  • [22] Global solutions to a class of nonlinear damped wave operator equations
    Pan, Zhigang
    Pu, Zhilin
    Ma, Tian
    BOUNDARY VALUE PROBLEMS, 2012,
  • [23] Global existence and asymptotic behavior of solutions for nonlinear wave equations
    Hidano, K
    Tsutaya, K
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1995, 44 (04) : 1273 - 1305
  • [24] GLOBAL EXISTENCE OF SOLUTIONS FOR A SYSTEM OF NONLINEAR DAMPED WAVE EQUATIONS
    Ogawa, Takayoshi
    Takeda, Hiroshi
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2010, 23 (7-8) : 635 - 657
  • [25] Global Nonlinear Stability of Large Dispersive Solutions to the Einstein Equations
    Luk, Jonathan
    Oh, Sung-Jin
    ANNALES HENRI POINCARE, 2022, 23 (07): : 2391 - 2521
  • [26] Global Nonlinear Stability of Large Dispersive Solutions to the Einstein Equations
    Jonathan Luk
    Sung-Jin Oh
    Annales Henri Poincaré, 2022, 23 : 2391 - 2521
  • [27] Stability of solutions to nonlinear wave equations with switching time delay
    Fragnelli, G.
    Pignotti, C.
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2016, 13 (01) : 31 - 51
  • [28] STABILITY OF SOLUTIONS FOR NONLINEAR WAVE EQUATIONS WITH A POSITIVE NEGATIVE DAMPING
    Fragnelli, Genni
    Mugnai, Dimitri
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2011, 4 (03): : 615 - 622
  • [29] On the Stability of Self-Similar Solutions to Nonlinear Wave Equations
    Ovidiu Costin
    Roland Donninger
    Irfan Glogić
    Min Huang
    Communications in Mathematical Physics, 2016, 343 : 299 - 310
  • [30] STABILITY OF SOLUTIONS FOR SOME CLASSES OF NONLINEAR DAMPED WAVE EQUATIONS
    Fragnelli, Genni
    Mugnai, Dimitri
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (05) : 2520 - 2539