Stability and Instability of Traveling Wave Solutions to Nonlinear Wave Equations

被引:3
|
作者
Anderson, John [1 ]
Zbarsky, Samuel [1 ]
机构
[1] Princeton Univ, Fine Hall Room,304, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
GLOBAL EXISTENCE; NULL CONDITION; DECAY; TIME;
D O I
10.1093/imrn/rnab250
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the stability and instability of plane wave solutions to semilinear systems of wave equations satisfying the null condition. We identify a condition that allows us to prove the global nonlinear asymptotic stability of the plane wave. The proof of global stability requires us to analyze the geometry of the interaction between the background plane wave and the perturbation. When this condition is not met, we are able to prove linear instability assuming an additional genericity condition. The linear instability is shown using a geometric optics ansatz.
引用
收藏
页码:95 / 184
页数:90
相关论文
共 50 条
  • [1] Stability of Traveling Wave Solutions of Nonlinear Dispersive Equations of NLS Type
    Leisman, Katelyn Plaisier
    Bronski, Jared C.
    Johnson, Mathew A.
    Marangell, Robert
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 240 (02) : 927 - 969
  • [2] Stability of Traveling Wave Solutions of Nonlinear Dispersive Equations of NLS Type
    Katelyn Plaisier Leisman
    Jared C. Bronski
    Mathew A. Johnson
    Robert Marangell
    Archive for Rational Mechanics and Analysis, 2021, 240 : 927 - 969
  • [3] Traveling wave solutions for nonlinear Schrodinger equations
    Najafi, Mohammad
    Arbabi, Somayeh
    OPTIK, 2015, 126 (23): : 3992 - 3997
  • [4] Bifurcations of traveling wave solutions for four classes of nonlinear wave equations
    Li, JB
    Chen, GR
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (12): : 3973 - 3998
  • [5] TRAVELING-WAVE SOLUTIONS TO NONLINEAR EVOLUTION AND WAVE-EQUATIONS
    YANG, ZJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (08): : 2837 - 2855
  • [6] APPROACH OF SOLUTIONS OF NONLINEAR DIFFUSION EQUATIONS TO TRAVELING WAVE SOLUTIONS
    FIFE, PC
    MCLEOD, JB
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 81 (06) : 1076 - 1078
  • [7] Explicit Traveling Wave Solutions to Nonlinear Evolution Equations
    Linghai ZHANG 11 Department of Mathematics
    Chinese Annals of Mathematics(Series B), 2011, 32 (06) : 929 - 964
  • [8] Traveling wave solutions for degenerate nonlinear parabolic equations
    Ichida, Yu
    Sakamoto, Takashi Okuda
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2020, 6 (02) : 795 - 832
  • [9] Traveling wave solutions of the generalized nonlinear evolution equations
    Kudryashov, Nikolai A.
    Demina, Maria V.
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 210 (02) : 551 - 557
  • [10] Traveling wave solutions of nonlinear partial differential equations
    Bazeia, D.
    Das, Ashok
    Losano, L.
    Santos, M. J.
    APPLIED MATHEMATICS LETTERS, 2010, 23 (06) : 681 - 686