Predictive modelling of hospital readmission: Evaluation of different preprocessing techniques on machine learning classifiers

被引:2
|
作者
Miswan, Nor Hamizah [1 ,2 ]
Chan, Chee Seng [1 ]
Ng, Chong Guan [3 ]
机构
[1] Univ Malaya, Fac Comp Sci & Informat Technol, Ctr Image & Signal Proc, Dept Artificial Intelligence, Kuala Lumpur 50603, Malaysia
[2] Univ Kebangsaan Malaysia, Fac Sci & Technol, Dept Math Sci, Ukm Bangi, Selangor, Malaysia
[3] Univ Malaya, Fac Med, Dept Psychol Med, Kuala Lumpur, Malaysia
关键词
Hospital readmission; machine learning; predictive modelling; preprocessing; HEART-FAILURE; 30-DAY READMISSION; AFTER-DISCHARGE; RISK; IMPUTATION; PATIENT; CLASSIFICATION; FRAMEWORK; SELECTION; DEATH;
D O I
10.3233/IDA-205468
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hospital readmission is a major cost for healthcare systems worldwide. If patients with a higher potential of readmission could be identified at the start, existing resources could be used more efficiently, and appropriate plans could be implemented to reduce the risk of readmission. Therefore, it is important to predict the right target patients. Medical data is usually noisy, incomplete, and inconsistent. Hence, before developing a prediction model, it is crucial to efficiently set up the predictive model so that improved predictive performance is achieved. The current study aims to analyse the impact of different preprocessing methods on the performance of different machine learning classifiers. The preprocessing applied by previous hospital readmission studies were compared, and the most common approaches highlighted such as missing value imputation, feature selection, data balancing, and feature scaling. The hyperparameters were selected using Bayesian optimisation. The different preprocessing pipelines were assessed using various performance metrics and computational costs. The results indicated that the preprocessing approaches helped improve the model's prediction of hospital readmission.
引用
收藏
页码:1073 / 1098
页数:26
相关论文
共 50 条
  • [41] Evaluation of machine learning classifiers for mobile malware detection
    Fairuz Amalina Narudin
    Ali Feizollah
    Nor Badrul Anuar
    Abdullah Gani
    Soft Computing, 2016, 20 : 343 - 357
  • [42] Evaluation of machine learning classifiers for mobile malware detection
    Narudin, Fairuz Amalina
    Feizollah, Ali
    Anuar, Nor Badrul
    Gani, Abdullah
    SOFT COMPUTING, 2016, 20 (01) : 343 - 357
  • [43] Evaluation of Machine Learning Classifiers for Predicting Deep Convection
    Ukkonen, Peter
    Makela, Antti
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2019, 11 (06) : 1784 - 1802
  • [44] Modelling and Evaluation of Network Intrusion Detection Systems Using Machine Learning Techniques
    Clottey, Richard Nunoo
    Yaokumah, Winfred
    Appati, Justice Kwame
    INTERNATIONAL JOURNAL OF INTELLIGENT INFORMATION TECHNOLOGIES, 2021, 17 (04)
  • [45] Comparative evaluation of machine learning classifiers with Obesity dataset
    Ramya, A.
    Rohini, K.
    2021 INTERNATIONAL CONFERENCE ON COMPUTING SCIENCES (ICCS 2021), 2021, : 38 - 41
  • [46] Comparison of Land Use Land Cover Classifiers Using Different Satellite Imagery and Machine Learning Techniques
    Basheer, Sana
    Wang, Xiuquan
    Farooque, Aitazaz A.
    Nawaz, Rana Ali
    Liu, Kai
    Adekanmbi, Toyin
    Liu, Suqi
    REMOTE SENSING, 2022, 14 (19)
  • [47] Imbalanced data preprocessing techniques for machine learning: a systematic mapping study
    Vitor Werner de Vargas
    Jorge Arthur Schneider Aranda
    Ricardo dos Santos Costa
    Paulo Ricardo da Silva Pereira
    Jorge Luis Victória Barbosa
    Knowledge and Information Systems, 2023, 65 : 31 - 57
  • [48] Performance evaluation of different machine learning techniques for prediction of heart disease
    Dwivedi, Ashok Kumar
    NEURAL COMPUTING & APPLICATIONS, 2018, 29 (10): : 685 - 693
  • [49] Imbalanced data preprocessing techniques for machine learning: a systematic mapping study
    de Vargas, Vitor Werner
    Schneider Aranda, Jorge Arthur
    Costa, Ricardo dos Santos
    da Silva Pereira, Paulo Ricardo
    Victoria Barbosa, Jorge Luis
    KNOWLEDGE AND INFORMATION SYSTEMS, 2023, 65 (01) : 31 - 57
  • [50] Effect of Data Preprocessing in the Detection of Epilepsy using Machine Learning Techniques
    Sabarivani, A.
    Ramadevi, R.
    Pandian, R.
    Krishnamoorthy, N. R.
    JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, 2021, 80 (12): : 1066 - 1077