Predictive modelling of hospital readmission: Evaluation of different preprocessing techniques on machine learning classifiers

被引:2
|
作者
Miswan, Nor Hamizah [1 ,2 ]
Chan, Chee Seng [1 ]
Ng, Chong Guan [3 ]
机构
[1] Univ Malaya, Fac Comp Sci & Informat Technol, Ctr Image & Signal Proc, Dept Artificial Intelligence, Kuala Lumpur 50603, Malaysia
[2] Univ Kebangsaan Malaysia, Fac Sci & Technol, Dept Math Sci, Ukm Bangi, Selangor, Malaysia
[3] Univ Malaya, Fac Med, Dept Psychol Med, Kuala Lumpur, Malaysia
关键词
Hospital readmission; machine learning; predictive modelling; preprocessing; HEART-FAILURE; 30-DAY READMISSION; AFTER-DISCHARGE; RISK; IMPUTATION; PATIENT; CLASSIFICATION; FRAMEWORK; SELECTION; DEATH;
D O I
10.3233/IDA-205468
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hospital readmission is a major cost for healthcare systems worldwide. If patients with a higher potential of readmission could be identified at the start, existing resources could be used more efficiently, and appropriate plans could be implemented to reduce the risk of readmission. Therefore, it is important to predict the right target patients. Medical data is usually noisy, incomplete, and inconsistent. Hence, before developing a prediction model, it is crucial to efficiently set up the predictive model so that improved predictive performance is achieved. The current study aims to analyse the impact of different preprocessing methods on the performance of different machine learning classifiers. The preprocessing applied by previous hospital readmission studies were compared, and the most common approaches highlighted such as missing value imputation, feature selection, data balancing, and feature scaling. The hyperparameters were selected using Bayesian optimisation. The different preprocessing pipelines were assessed using various performance metrics and computational costs. The results indicated that the preprocessing approaches helped improve the model's prediction of hospital readmission.
引用
收藏
页码:1073 / 1098
页数:26
相关论文
共 50 条
  • [21] Predictive modeling for 14-day unplanned hospital readmission risk by using machine learning algorithms
    Lo, Yu-Tai
    Liao, Jay Chie-hen
    Chen, Mei-Hua
    Chang, Chia-Ming
    Li, Cheng-Te
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2021, 21 (01)
  • [22] Predictive risk modelling for early hospital readmission of patients with diabetes in India
    Duggal, Reena
    Shukla, Suren
    Chandra, Sarika
    Shukla, Balvinder
    Khatri, Sunil Kumar
    INTERNATIONAL JOURNAL OF DIABETES IN DEVELOPING COUNTRIES, 2016, 36 (04) : 519 - 528
  • [23] Predictive risk modelling for early hospital readmission of patients with diabetes in India
    Reena Duggal
    Suren Shukla
    Sarika Chandra
    Balvinder Shukla
    Sunil Kumar Khatri
    International Journal of Diabetes in Developing Countries, 2016, 36 : 519 - 528
  • [24] Improvization of Arrhythmia Detection Using Machine Learning and Preprocessing Techniques
    Babbar, Sarthak
    Kulshrestha, Sudhanshu
    Shangle, Kartik
    Dewan, Navroz
    Kesarwani, Saommya
    APPLICATIONS OF ARTIFICIAL INTELLIGENCE TECHNIQUES IN ENGINEERING, VOL 2, 2019, 697 : 537 - 550
  • [25] Predictive Maintenance Method Using Machine Learning; Comparing Classifiers
    Chimundu, John
    Ali, Ahmed
    Nuvvula, Ramakrishna S. S.
    Khan, Baseem
    Venkataramana
    Kumar, Polamarasetty P.
    12TH INTERNATIONAL CONFERENCE ON SMART GRID, ICSMARTGRID 2024, 2024, : 530 - 538
  • [26] ENHANCING WELDING QUALITY THROUGH PREDICTIVE MODELLING - INSIGHTS FROM MACHINE LEARNING TECHNIQUES
    Kalita, Kanak
    Ghadai, Ranjan Kumar
    Cep, Robert
    Jangir, Pradeep
    MM SCIENCE JOURNAL, 2024, 2024 : 7900 - 7905
  • [27] Predictive analysis of COVID 19 disease based on mathematical modelling and machine learning techniques
    Perepi, Rajarajeswari
    Santhi, K.
    Saraswathi, R.
    Beg, O. Anwar
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2023, 11 (03): : 933 - 941
  • [28] Predictive modelling of MapReduce job performance in cloud environments using machine learning techniques
    Bergui, Mohammed
    Hourri, Soufiane
    Najah, Said
    Nikolov, Nikola S.
    JOURNAL OF BIG DATA, 2024, 11 (01)
  • [29] Evaluation of generality of inductive learning for preprocessing in machine translation
    Nagashima, Y
    Araki, K
    Tochinai, K
    2001 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5: E-SYSTEMS AND E-MAN FOR CYBERNETICS IN CYBERSPACE, 2002, : 921 - 926
  • [30] Explainability analysis in predictive models based on machine learning techniques on the risk of hospital readmissions
    Bedoya, Juan Camilo Lopera
    Castro, Jose Lisandro Aguilar
    HEALTH AND TECHNOLOGY, 2024, 14 (01) : 93 - 108