A class of thermal sub-differential contact problems

被引:1
|
作者
Chau, Oanh [1 ]
机构
[1] Univ La Reunion, Dept Math, BP 7151,15 Ave Rene Cassin, F-97715 St Denis Messag 09, Le Reunion, France
来源
AIMS MATHEMATICS | 2017年 / 2卷 / 04期
关键词
time depending thermo-visco-elasticity; sub-differential contact condition; non clamped condition; evolution variational inequality; numerical analysis; numerical computations;
D O I
10.3934/Math.2017.4.658
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a class of dynamic sub-differential contact problems with friction, and thermal effects, for time depending long memory visco-elastic materials, with or without the clamped condition. We describe the mechanical problem, derive its variational formulation, and after specifying the assumptions on the data and operators, we prove an existence and uniqueness of weak solution on displacement and temperature fields. Then we present a fully discrete scheme for numerical approximations of the different solutions, and provide analysis of error order estimates. Finally various numerical computations in dimension two will be given.
引用
收藏
页码:658 / 681
页数:24
相关论文
共 50 条
  • [41] A mixed variational formulation for a class of contact problems in viscoelasticity
    Matei, A.
    Sitzmann, S.
    Willner, K.
    Wohlmuth, B. I.
    APPLICABLE ANALYSIS, 2018, 97 (08) : 1340 - 1356
  • [42] ONE CLASS OF CONTACT PROBLEMS FOR A CYLINDRICAL-SHELL
    LVOV, GI
    SOVIET APPLIED MECHANICS, 1983, 19 (07): : 595 - 599
  • [43] Numerical Analysis for a Class of Non Clamped Contact Problems
    Chau, Oanh
    ADVANCES IN GLOBAL OPTIMIZATION, 2015, 95 : 325 - 333
  • [44] A Class of Mixed Variational Problems with Applications in Contact Mechanics
    Sofonea, Mircea
    ADVANCES IN GLOBAL OPTIMIZATION, 2015, 95 : 305 - 314
  • [45] Analysis of a Class of Frictional Contact Problems for the Bingham Fluid
    Mohamed Selmani
    Boubakeur Merouani
    Lynda Selmani
    Mediterranean Journal of Mathematics, 2005, 2 : 113 - 124
  • [46] A Class of Subdifferential Inclusions for Elastic Unilateral Contact Problems
    Kalita, Piotr
    Migorski, Stanislaw
    Sofonea, Mircea
    SET-VALUED AND VARIATIONAL ANALYSIS, 2016, 24 (02) : 355 - 379
  • [47] A CLASS OF CONTACT AND FRICTION DYNAMIC PROBLEMS IN THERMOELASTICITY AND IN THERMOVISCOELASTICITY
    FIGUEIREDO, I
    TRABUCHO, L
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1995, 33 (01) : 45 - 66
  • [48] Sub-Riemannian metrics and isoperimetric problems in the contact case
    Agrachev A.A.
    Gauthier J.P.A.
    Journal of Mathematical Sciences, 2001, 103 (6) : 639 - 663
  • [49] A differential variational inequality in the study of contact problems with wear
    Chen, Tao
    Huang, Nan-Jing
    Sofonea, Mircea
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 67
  • [50] A differential variational inequality in the study of contact problems with wear
    Chen, Tao
    Huang, Nan-Jing
    Sofonea, Mircea
    Nonlinear Analysis: Real World Applications, 2022, 67