A class of thermal sub-differential contact problems

被引:1
|
作者
Chau, Oanh [1 ]
机构
[1] Univ La Reunion, Dept Math, BP 7151,15 Ave Rene Cassin, F-97715 St Denis Messag 09, Le Reunion, France
来源
AIMS MATHEMATICS | 2017年 / 2卷 / 04期
关键词
time depending thermo-visco-elasticity; sub-differential contact condition; non clamped condition; evolution variational inequality; numerical analysis; numerical computations;
D O I
10.3934/Math.2017.4.658
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a class of dynamic sub-differential contact problems with friction, and thermal effects, for time depending long memory visco-elastic materials, with or without the clamped condition. We describe the mechanical problem, derive its variational formulation, and after specifying the assumptions on the data and operators, we prove an existence and uniqueness of weak solution on displacement and temperature fields. Then we present a fully discrete scheme for numerical approximations of the different solutions, and provide analysis of error order estimates. Finally various numerical computations in dimension two will be given.
引用
收藏
页码:658 / 681
页数:24
相关论文
共 50 条
  • [31] On a class of inverse problems for degenerate differential equations
    Awawdeh, Fadi
    Jaradat, H.M.
    World Academy of Science, Engineering and Technology, 2010, 71 : 148 - 150
  • [32] A CLASS OF DIFFERENTIAL GAME PROBLEMS FOR DESCRIPTOR SYSTEMS
    WU, HS
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1992, 23 (10) : 1731 - 1744
  • [33] Remarks on a class of integro-differential problems
    Alves, Claudianor O.
    Correa, Francisco Julio S. A.
    Santos Jr, Joao R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 506 (02)
  • [34] A Class of Extremal Problems for Partial Differential Equations
    S. B. Rukhlina
    Differential Equations, 2002, 38 : 109 - 119
  • [35] NUMERICAL TREATMENT OF CONTACT PROBLEMS WITH THERMAL EFFECT
    Ochal, Anna
    Jureczka, Michal
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (01): : 387 - 400
  • [36] Review : Thermal contact problems at cryogenic temperature
    Jeong, Sangkwon
    Park, Changgi
    PROGRESS IN SUPERCONDUCTIVITY AND CRYOGENICS, 2015, 17 (04): : 1 - 7
  • [37] A Class of Subdifferential Inclusions for Elastic Unilateral Contact Problems
    Piotr Kalita
    Stanisław Migórski
    Mircea Sofonea
    Set-Valued and Variational Analysis, 2016, 24 : 355 - 379
  • [38] A class of dynamic contact problems with Coulomb friction in viscoelasticity
    Cocou, Marius
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 22 : 508 - 519
  • [39] A new class of conserving algorithms for dynamic contact problems
    Armero, F
    Petocz, E
    NUMERICAL METHODS IN ENGINEERING '96, 1996, : 861 - 867
  • [40] Analysis of a class of frictional contact problems for the Bingham fluid
    Selmani, Mohamed
    Merouani, Boubakeur
    Selmani, Lynda
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2005, 2 (01) : 113 - 124