Validity of the Quantitative EEG Statistical Pattern Recognition Method in Diagnosing Alzheimer's Disease

被引:22
|
作者
Ommundsen, Nina [1 ]
Engedal, Knut [1 ,2 ]
Oksengard, Anne Rita [1 ,3 ,4 ,5 ]
机构
[1] Ullevaal Univ Hosp, Dept Geriatr Med, NO-0424 Oslo, Norway
[2] Ullevaal Univ Hosp, Norwegian Ctr Ageing & Hlth Res Educ & Serv Dev, NO-0424 Oslo, Norway
[3] Memory Clin, Dept Geriatr, Asker, Norway
[4] Baerum Hosp, Rud, Norway
[5] Karolinska Inst, NVS Dept, Sect Clin Geriatr, Karolinska Univ Hosp, Stockholm, Sweden
关键词
Alzheimer's disease; Dementia; Diagnostics; Electroencephalography; Mild cognitive impairment; Validate; MILD COGNITIVE IMPAIRMENT; RESTING EEG; DEMENTIA; POPULATION; ACCURACY;
D O I
10.1159/000324878
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
Aims: To evaluate the use of quantitative EEG (qEEG) statistical pattern recognition in diagnosing Alzheimer's disease (AD). Methods: qEEG was performed on 104 patients referred to a memory clinic. The qEEG results were compared to the clinical diagnosis made without access to the EEG results. Results: Of 30 patients with a clinical diagnosis of AD, 22 were test positive. Of the 74 patients without AD, 34 were test negative. The qEEG result was found to correlate with atrophy of the medial temporal lobe demonstrated on cerebral MRI (p = 0.002) and with scores on neuropsychological tests. Conclusion: The qEEG was poor at diagnosing AD, as it produced many false-positive results. Copyright (C) 2011 S. Karger AG, Basel
引用
收藏
页码:195 / 201
页数:7
相关论文
共 50 条
  • [31] Quantitative EEG analysis in subjects at risk of inheriting familial Alzheimer's disease
    Gómez-Pérez, E
    Ostrosky-Solís, F
    Corsi-Cabrera, M
    Guevara, MA
    Aveleyra, E
    REVISTA MEXICANA DE PSICOLOGIA, 2002, 19 (01): : 5 - 15
  • [32] Synaptic dysfunction in Alzheimer's disease: Clinical assessment using quantitative EEG
    Cook, IA
    Leuchter, AF
    BEHAVIOURAL BRAIN RESEARCH, 1996, 78 (01) : 15 - 23
  • [33] Quantitative EEG power and synchronization correlate with Alzheimer's disease CSF biomarkers
    Smailovic, Una
    Koenig, Thomas
    Kareholt, Ingemar
    Andersson, Thomas
    Kramberger, Milica Gregoric
    Winblad, Bengt
    Jelic, Vesna
    NEUROBIOLOGY OF AGING, 2018, 63 : 88 - 95
  • [34] The effect of the FGL peptide on quantitative EEG in an animal model of Alzheimer's disease
    Kaderabek, L.
    Palenicek, T.
    Tyls, F.
    Kubesova, A.
    Novakova, P.
    Lhotkova, E.
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2014, 24 : S180 - S181
  • [35] Quantitative EEG correlates with cognitive state in normal, MCI and Alzheimer's disease
    Singh, Satvir
    Fox, Chris
    Katona, Cornelius
    Greenwald, Scott
    AUSTRALIAN AND NEW ZEALAND JOURNAL OF PSYCHIATRY, 2007, 41 : A106 - A106
  • [36] Measuring emotion recognition: Added value in diagnosing dementia of the Alzheimer's disease type
    Strijkert, Fijanne
    Huitema, Rients Bauke
    Spikman, Jacoba Margje
    JOURNAL OF NEUROPSYCHOLOGY, 2022, 16 (02) : 263 - 282
  • [37] Quantitative EEG in Alzheimer's disease: Cognitive state, resting state and association with disease severity
    Garn, Heinrich
    Waser, Markus
    Deistler, Manfred
    Schmidt, Reinhold
    Dal-Bianco, Peter
    Ransmayr, Gerhard
    Zeitlhofer, Josef
    Schmidt, Helena
    Seiler, Stephan
    Sanin, Guenter
    Caravias, Georg
    Santer, Peter
    Grossegger, Dieter
    Fruehwirt, Wolfgang
    Benke, Thomas
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2014, 93 (03) : 390 - 397
  • [38] Approaching cognitive networks with dynamic EEG method in Alzheimer's disease
    Hidasi, Zoltan
    Czigler, Balazs
    Molnar, Mark
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2010, 77 (03) : 263 - 264
  • [39] Early Detection Method of Alzheimer's Disease Using EEG Signals
    Al-Jumeily, Dhiya
    Iram, Shamaila
    Hussain, Abir Jaffar
    Francois-Benois, Vialatte
    Fergus, Paul
    INTELLIGENT COMPUTING IN BIOINFORMATICS, 2014, 8590 : 25 - 33
  • [40] EEG in the diagnostics of Alzheimer’s disease
    M. Waser
    M. Deistler
    H. Garn
    T. Benke
    P. Dal-Bianco
    G. Ransmayr
    D. Grossegger
    R. Schmidt
    Statistical Papers, 2013, 54 : 1095 - 1107