GROUND STATE SOLUTIONS FOR ASYMPTOTICALLY PERIODIC LINEARLY COUPLED SCHRODINGER EQUATIONS WITH CRITICAL EXPONENT

被引:0
|
作者
Chen, Sitong [1 ]
Tang, XianHua [1 ]
Li, Jianxiong [1 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Linearly coupled Schrodinger system; Nehari-type ground state solutions; Sobolev critical exponent; NEHARI-MANIFOLD METHOD; MAXWELL-DIRAC SYSTEM; STANDING WAVES; R-N; SOLITONS; NONLINEARITY; BIFURCATION; POTENTIALS;
D O I
10.2996/kmj/1509415233
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the following system of coupled nonlinear Schrodinger equations { -Delta u + a(x)u = vertical bar u vertical bar(p-2) u + lambda(x)nu, x epsilon R-N, -Delta v + b(x)v = vertical bar v vertical bar(2*-2) v + lambda(x)u, x epsilon R-N, u,v epsilon H-1 (R-N), where N >= 3, 2 < p < 2*, 2* = 2N/(N - 2) is the Sobolev critical exponent, a,b,lambda epsilon C(R-N, R) boolean AND L-infinity (R-N, R) and a(x), b(x) and lambda(x) are asymptotically periodic, and can be sign-changing. By using a new technique, we prove the existence of a ground state of Nehari type solution for the above system under some mild assumptions on a, b and lambda. In particular, the common condition that vertical bar lambda(x)vertical bar < root a(x)b(x) for all x epsilon R-N is not required.
引用
收藏
页码:562 / 576
页数:15
相关论文
共 50 条
  • [31] Ground state solutions for periodic Discrete nonlinear Schrodinger equations
    Xu, Xionghui
    Sun, Jijiang
    AIMS MATHEMATICS, 2021, 6 (12): : 13057 - 13071
  • [32] Quasilinear asymptotically periodic Schrodinger equations with critical growth
    Silva, Elves A. B.
    Vieira, Gilberto F.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 39 (1-2) : 1 - 33
  • [33] Ground-State Solutions for Asymptotically Cubic Schrodinger-Maxwell Equations
    Huang, Wen-nian
    Tang, X. H.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) : 3469 - 3481
  • [34] Ground state solutions for asymptotically linear Schrodinger equations on locally finite graphs
    Li, Yunxue
    Wang, Zhengping
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (14) : 11602 - 11610
  • [35] Ground states for a system of Schrodinger equations with critical exponent
    Chen, Zhijie
    Zou, Wenming
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (07) : 3091 - 3107
  • [36] Ground state solutions for fractional Schrodinger equations with critical exponents
    Guo, Zhenyu
    Yan, Xueqian
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2022, 132 (02):
  • [37] Ground state solutions for critical Schrodinger equations with Hardy potential
    Li, Gui-Dong
    Li, Yong-Yong
    Tang, Chun-Lei
    NONLINEARITY, 2022, 35 (10) : 5076 - 5108
  • [38] Normalized Ground State Solutions for Critical Growth Schrodinger Equations
    Fan, Song
    Li, Gui-Dong
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (01)
  • [39] Non-periodic discrete Schrodinger equations: ground state solutions
    Chen, Guanwei
    Schechter, Martin
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03):
  • [40] Ground state solutions of fractional equations with Coulomb potential and critical exponent
    Feng, Zhaosheng
    Su, Yu
    STUDIES IN APPLIED MATHEMATICS, 2024, 153 (02)