GROUND STATE SOLUTIONS FOR ASYMPTOTICALLY PERIODIC LINEARLY COUPLED SCHRODINGER EQUATIONS WITH CRITICAL EXPONENT

被引:0
|
作者
Chen, Sitong [1 ]
Tang, XianHua [1 ]
Li, Jianxiong [1 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Linearly coupled Schrodinger system; Nehari-type ground state solutions; Sobolev critical exponent; NEHARI-MANIFOLD METHOD; MAXWELL-DIRAC SYSTEM; STANDING WAVES; R-N; SOLITONS; NONLINEARITY; BIFURCATION; POTENTIALS;
D O I
10.2996/kmj/1509415233
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the following system of coupled nonlinear Schrodinger equations { -Delta u + a(x)u = vertical bar u vertical bar(p-2) u + lambda(x)nu, x epsilon R-N, -Delta v + b(x)v = vertical bar v vertical bar(2*-2) v + lambda(x)u, x epsilon R-N, u,v epsilon H-1 (R-N), where N >= 3, 2 < p < 2*, 2* = 2N/(N - 2) is the Sobolev critical exponent, a,b,lambda epsilon C(R-N, R) boolean AND L-infinity (R-N, R) and a(x), b(x) and lambda(x) are asymptotically periodic, and can be sign-changing. By using a new technique, we prove the existence of a ground state of Nehari type solution for the above system under some mild assumptions on a, b and lambda. In particular, the common condition that vertical bar lambda(x)vertical bar < root a(x)b(x) for all x epsilon R-N is not required.
引用
收藏
页码:562 / 576
页数:15
相关论文
共 50 条